Jyantkumar commited on
Commit
5ce154b
1 Parent(s): 0938d30

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -0
app.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+ tf.__version__
3
+ import numpy as np
4
+ import pandas as pd
5
+ import matplotlib.pyplot as plt
6
+ import seaborn as sns
7
+ from tensorflow.keras.applications import vgg16
8
+ #from keras.preprocessing.image import ImageDataGenerator
9
+ from keras.models import Sequential
10
+ from keras.layers import Conv2D, MaxPooling2D, Dropout, Input, Dense, Flatten
11
+ from tensorflow.keras.utils import load_img, img_to_array
12
+ from sklearn.metrics import confusion_matrix
13
+ import numpy as np
14
+ import pandas as pd
15
+ import matplotlib.pyplot as plt
16
+ import seaborn as sns
17
+ from tensorflow.keras.applications import vgg16
18
+ #from keras.preprocessing.image import ImageDataGenerator
19
+ from keras.models import Sequential
20
+ from keras.layers import Conv2D, MaxPooling2D, Dropout, Input, Dense, Flatten
21
+ from tensorflow.keras.utils import load_img, img_to_array
22
+ from sklearn.metrics import confusion_matrix
23
+
24
+
25
+ model = tf.keras.models.load_model('my_model.keras')
26
+
27
+
28
+ import gradio as gr
29
+ import numpy as np
30
+ from PIL import Image
31
+
32
+ def sepia(input_img_path):
33
+ img = load_img(input_img_path,target_size=(224,224))
34
+ img = img_to_array(img)
35
+ img = img / 255
36
+ img = img.reshape(1,224,224,3)
37
+ p = (model.predict(img)>=0.5).astype(int)[0][0]
38
+ if p==0:
39
+ return "Men"
40
+ else:
41
+ return "women"
42
+
43
+ demo = gr.Interface(fn=sepia,inputs= gr.Image(type="filepath",height=200,width=300),outputs="text")
44
+ demo.launch()