Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from timm import create_model, list_models | |
from types import SimpleNamespace | |
from transformers import GPT2LMHeadModel, GPT2TokenizerFast, get_linear_schedule_with_warmup | |
import albumentations as A | |
from albumentations.pytorch import ToTensorV2 | |
from PIL import Image | |
from pathlib import Path | |
from sklearn.model_selection import train_test_split | |
from torch.cuda.amp import GradScaler, autocast | |
from tqdm.auto import tqdm | |
import gc | |
import json | |
class GPT2Attention(nn.Module): | |
def __init__(self,config): | |
super().__init__() | |
self.embed_dim = config.embed_dim | |
self.n_heads = config.num_heads | |
assert self.embed_dim % self.n_heads == 0, 'embedding dimension by be divisible by number of heads' | |
self.head_size = self.embed_dim // self.n_heads | |
self.seq_len = config.seq_len | |
self.c_attn = nn.Linear(self.embed_dim, self.head_size * self.n_heads * 3,bias=True) | |
self.scale = self.head_size ** -0.5 | |
self.register_buffer('mask',torch.tril(torch.ones(1,1,self.seq_len,self.seq_len))) | |
self.c_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True) | |
self.attn_dropout = nn.Dropout(config.attention_dropout) | |
self.resid_dropout = nn.Dropout(config.residual_dropout) | |
def forward(self, x): | |
b,t,c = x.shape | |
# q,k,v shape individually: batch_size x seq_len x embed_dim | |
# we know that qk_t = q x k_t, where q=bxtxhead_dim, k_t=bxhead_timxt | |
q,k,v = self.c_attn(x).chunk(3,dim=-1) | |
q = q.view(b,t,self.n_heads,self.head_size).permute(0,2,1,3) # batch x n_heads x seq_len x head_dim | |
k = k.view(b,t,self.n_heads,self.head_size).permute(0,2,1,3) | |
v = v.view(b,t,self.n_heads,self.head_size).permute(0,2,1,3) | |
qk_t = ([email protected](-2,-1)) * self.scale | |
qk_t = qk_t.masked_fill(self.mask[:,:,:t,:t]==0,float('-inf')) | |
qk_t = F.softmax(qk_t,dim=-1) | |
weights = self.attn_dropout(qk_t) | |
attention = weights @ v # batch x n_heads x t x head_size | |
attention = attention.permute(0,2,1,3).contiguous().view(b,t,c) # batch x t x embed_dim | |
out = self.c_proj(attention) | |
out = self.resid_dropout(out) | |
return out | |
class GPT2CrossAttention(nn.Module): | |
def __init__(self,config): | |
super().__init__() | |
self.embed_dim = config.embed_dim | |
self.n_heads = config.num_heads | |
assert self.embed_dim % self.n_heads == 0, 'embedding dimension by be divisible by number of heads' | |
self.head_size = self.embed_dim // self.n_heads | |
self.seq_len = config.seq_len | |
self.q = nn.Linear(self.embed_dim,self.embed_dim) | |
self.k = nn.Linear(self.embed_dim,self.embed_dim) | |
self.v = nn.Linear(self.embed_dim,self.embed_dim) | |
self.scale = self.head_size ** -0.5 | |
self.c_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True) | |
self.attn_dropout = nn.Dropout(config.attention_dropout) | |
self.resid_dropout = nn.Dropout(config.residual_dropout) | |
self.apply(self._init_weights) | |
def _init_weights(self, module): | |
if isinstance(module, nn.Linear): | |
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) | |
if module.bias is not None: | |
torch.nn.init.zeros_(module.bias) | |
def forward(self, q,k,v): | |
b,t,c = q.shape | |
q = self.q(q) | |
k = self.k(k) | |
v = self.v(v) | |
q = q.view(b,q.size(1),self.n_heads,self.head_size).permute(0,2,1,3) # batch x n_heads x seq_len x head_dim | |
k = k.view(b,k.size(1),self.n_heads,self.head_size).permute(0,2,1,3) | |
v = v.view(b,v.size(1),self.n_heads,self.head_size).permute(0,2,1,3) | |
qk_t = ([email protected](-2,-1)) * self.scale | |
qk_t = F.softmax(qk_t,dim=-1) | |
weights = self.attn_dropout(qk_t) | |
attention = weights @ v # batch x n_heads x t x head_size | |
attention = attention.permute(0,2,1,3).contiguous().view(b,t,c) # batch x t x embed_dim | |
out = self.c_proj(attention) | |
out = self.resid_dropout(out) | |
return out | |
class GPT2MLP(nn.Module): | |
def __init__(self,config): | |
super().__init__() | |
self.embed_dim = config.embed_dim | |
self.mlp_ratio = config.mlp_ratio | |
self.mlp_dropout = config.mlp_dropout | |
self.c_fc = nn.Linear(self.embed_dim,self.embed_dim*self.mlp_ratio) | |
self.c_proj = nn.Linear(self.embed_dim*self.mlp_ratio,self.embed_dim) | |
self.act = nn.GELU() | |
self.dropout = nn.Dropout(self.mlp_dropout) | |
def forward(self,x): | |
x = self.c_fc(x) | |
x = self.act(x) | |
x = self.c_proj(x) | |
x = self.dropout(x) | |
return x | |
class GPT2Block(nn.Module): | |
def __init__(self,config): | |
super().__init__() | |
self.embed_dim = config.embed_dim | |
self.ln_1 = nn.LayerNorm(self.embed_dim) | |
self.attn = GPT2Attention(config) | |
self.ln_2 = nn.LayerNorm(self.embed_dim) | |
self.mlp = GPT2MLP(config) | |
self.ln_3 = nn.LayerNorm(self.embed_dim) | |
self.cross_attn = GPT2CrossAttention(config) | |
def forward(self,x,enc_out): | |
x = x+self.attn(self.ln_1(x)) | |
x = x+self.cross_attn(self.ln_2(x),enc_out,enc_out) | |
x = x+self.mlp(self.ln_3(x)) | |
return x | |
class VisionGPT2Model(nn.Module): | |
def __init__(self,config): | |
super().__init__() | |
self.config = config | |
print(torch.cuda.is_available()) | |
vit = create_model('vit_base_patch16_224',pretrained=True,num_classes=0) | |
self.patch_embed = vit.patch_embed | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = vit.cls_token | |
embed_len = num_patches + vit.num_prefix_tokens | |
self.pos_embed = vit.pos_embed | |
self.pos_drop = nn.Dropout(p=0.) | |
self.blocks = nn.ModuleList([vit.blocks[i] for i in range(config.depth)]) | |
self.transformer = nn.ModuleDict(dict( | |
wte = nn.Embedding(config.vocab_size,config.embed_dim), | |
wpe = nn.Embedding(config.seq_len,config.embed_dim), | |
drop = nn.Dropout(config.emb_dropout), | |
h = nn.ModuleList([GPT2Block(config) for _ in range(config.depth)]), | |
ln_f = nn.LayerNorm(config.embed_dim) | |
)) | |
self.lm_head = nn.Linear(config.embed_dim,config.vocab_size,bias=False) | |
self.transformer.wte.weight = self.lm_head.weight | |
def _pos_embed(self,x): | |
pos_embed = self.pos_embed | |
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) | |
x = x + pos_embed | |
return self.pos_drop(x) | |
def pretrained_layers_trainable(self,trainable=False): | |
layers = [ | |
self.cls_token, self.patch_embed, self.pos_embed, self.blocks, | |
self.transformer.wte, self.transformer.wpe, | |
self.transformer.ln_f, self.lm_head | |
] | |
gpt_layers = [[ | |
self.transformer.h[i].ln_1,self.transformer.h[i].ln_2, | |
self.transformer.h[i].attn,self.transformer.h[i].mlp | |
] for i in range(self.config.depth)] | |
for l in gpt_layers: | |
layers.extend(l) | |
for layer in layers: | |
if not isinstance(layer,nn.Parameter): | |
for p in layer.parameters(): | |
p.requires_grad = trainable | |
else: | |
layer.requires_grad = trainable | |
total_frozen_params = sum([p.numel() for p in self.parameters() if not p.requires_grad]) | |
print(f'{total_frozen_params=}') | |
def unfreeze_gpt_layers(self,): | |
gpt_layers = [[ | |
self.transformer.h[i].ln_1,self.transformer.h[i].ln_2, | |
self.transformer.h[i].attn,self.transformer.h[i].mlp | |
] for i in range(self.config.depth)] | |
flatten = [] | |
for l in gpt_layers: | |
flatten.extend(l) | |
for layer in flatten: | |
if not isinstance(layer,nn.Parameter): | |
for p in layer.parameters(): | |
p.requires_grad = True | |
else: | |
layer.requires_grad = True | |
def from_pretrained(self,config): | |
model = VisionGPT2Model(config) | |
sd = model.state_dict() | |
keys = sd.keys() | |
ignore_matches = ['blocks.','cross_attn.','ln_3','cls_token','pos_embed','patch_embed.','.attn.mask'] | |
vit_keys = [key for key in keys if any(match in key for match in ignore_matches)] | |
gpt_keys = [key for key in keys if key not in vit_keys] | |
gpt2_small = GPT2LMHeadModel.from_pretrained('gpt2') | |
sd_hf = gpt2_small.state_dict() | |
hf_keys = sd_hf.keys() | |
hf_keys = [k for k in hf_keys if not k.endswith('.attn.masked_bias')] | |
hf_keys = [k for k in hf_keys if not k.endswith('.attn.bias')] | |
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] | |
for k in hf_keys: | |
if any(match in k for match in ignore_matches): | |
continue | |
if any(k.endswith(w) for w in transposed): | |
assert sd_hf[k].shape[::-1] == sd[k].shape | |
with torch.no_grad(): | |
sd[k].copy_(sd_hf[k].t()) | |
else: | |
assert sd_hf[k].shape == sd[k].shape | |
with torch.no_grad(): | |
sd[k].copy_(sd_hf[k]) | |
model.load_state_dict(sd) | |
return model | |
def forward(self,image,input_ids,labels=None): | |
image = self.patch_embed(image) | |
image = self._pos_embed(image) | |
token_embeddings = self.transformer.wte(input_ids) # batch x seq_len | |
pos_embs = torch.arange(0, input_ids.size(1), device=self.config.device) | |
positional_embeddings = self.transformer.wpe(pos_embs) | |
input_ids = self.transformer.drop(token_embeddings+positional_embeddings) | |
for i in range(self.config.depth): | |
image = self.blocks[i](image) | |
input_ids = self.transformer.h[i](input_ids, image) | |
input_ids = self.transformer.ln_f(input_ids) | |
if labels is not None: | |
lm_logits = self.lm_head(input_ids) | |
loss = F.cross_entropy(lm_logits.view(-1, lm_logits.shape[-1]), labels.view(-1)) | |
return loss | |
lm_logits = self.lm_head(input_ids[:,[-1],:]) | |
return lm_logits | |
def generate(self,image,sequence,tokenizer,max_tokens=50,temperature=1.0,deterministic=False): | |
for _ in range(max_tokens): | |
out = self(image,sequence) | |
out = out[:,-1,:] / temperature | |
probs = F.softmax(out,dim=-1) | |
if deterministic: | |
next_token = torch.argmax(probs,dim=-1,keepdim=True) | |
else: | |
next_token = torch.multinomial(probs,num_samples=1) | |
sequence = torch.cat([sequence,next_token],dim=1) | |
if next_token.item() == tokenizer.eos_token_id: | |
break | |
return sequence.cpu().flatten() | |
model_config = SimpleNamespace( | |
vocab_size = 50_257, | |
embed_dim = 768, | |
num_heads = 12, | |
seq_len = 1024, | |
depth = 12, | |
attention_dropout = 0.1, | |
residual_dropout = 0.1, | |
mlp_ratio = 4, | |
mlp_dropout = 0.1, | |
emb_dropout = 0.1, | |
device='cpu' | |
) | |
model = VisionGPT2Model.from_pretrained(model_config) | |
model.load_state_dict(torch.load("captioner.pt", map_location='cpu')) # Use 'cuda' if you have a GPU | |
model.eval() # Set the model to evaluation mode | |
def generate_caption(image,max_tokens=50,temperature=0.9,deterministic=True): | |
tokenizer = GPT2TokenizerFast.from_pretrained('gpt2') | |
tokenizer.pad_token = tokenizer.eos_token | |
gen_tfms = A.Compose([ | |
A.Resize(224,224), | |
A.Normalize(mean=[0.5,0.5,0.5],std=[0.5,0.5,0.5],always_apply=True), | |
ToTensorV2() | |
]) | |
image = Image.open(image) | |
image = np.array(image) | |
image = gen_tfms(image=image)['image'] | |
image = image.unsqueeze(0) | |
sequence = torch.ones(1,1).long() * tokenizer.bos_token_id | |
caption = model.generate( | |
image, | |
sequence, | |
tokenizer, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
deterministic=deterministic, | |
) | |
caption = tokenizer.decode(caption.numpy(),skip_special_tokens=True) | |
print(caption) | |
return caption | |
image = "/Users/jkottu/Desktop/image-captioning-chest-xrays/sample_images/CXR191_IM-0591-1001.png" | |
generate_caption(image) |