Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoFeatureExtractor, AutoModelForImageClassification | |
# Load the feature extractor and model directly | |
feature_extractor = AutoFeatureExtractor.from_pretrained("Devarshi/Brain_Tumor_Classification") | |
model = AutoModelForImageClassification.from_pretrained("Devarshi/Brain_Tumor_Classification") | |
# Define the prediction function using the loaded model | |
def classify_image(image): | |
# Preprocess the image and obtain features | |
inputs = feature_extractor(images=image, return_tensors="pt") | |
# Make prediction using the model | |
outputs = model(**inputs) | |
logits = outputs.logits | |
# Get the predicted class and confidence of the prediction | |
predicted_class = logits.argmax(dim=1).item() | |
confidence = logits.softmax(dim=1).max().item() | |
# Map the predicted class to the correct names | |
class_names = ["glioma_tumor", "meningioma_tumor", "no_tumor", "pituitary_tumor"] | |
predicted_class_text = class_names[predicted_class] | |
return {"prediction": predicted_class_text, "confidence": confidence} | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=classify_image, | |
inputs=gr.Image(), | |
outputs="json", | |
title="Brain Tumor Image Classification", | |
description="This app classifies images of brain tumors into different classes.", | |
) | |
# Launch the Gradio interface | |
if __name__ == "__main__": | |
iface.launch() | |