Spaces:
Sleeping
Sleeping
Commit
·
215c17e
1
Parent(s):
1664376
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
3 |
+
|
4 |
+
# Load the feature extractor and model directly
|
5 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("Devarshi/Brain_Tumor_Classification")
|
6 |
+
model = AutoModelForImageClassification.from_pretrained("Devarshi/Brain_Tumor_Classification")
|
7 |
+
|
8 |
+
# Define the prediction function using the loaded model
|
9 |
+
def classify_image(image):
|
10 |
+
# Preprocess the image and obtain features
|
11 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
12 |
+
# Make prediction using the model
|
13 |
+
outputs = model(**inputs)
|
14 |
+
logits = outputs.logits
|
15 |
+
# Get the predicted class and confidence of the prediction
|
16 |
+
predicted_class = logits.argmax(dim=1).item()
|
17 |
+
confidence = logits.softmax(dim=1).max().item()
|
18 |
+
|
19 |
+
# Map the predicted class to the correct names
|
20 |
+
class_names = ["glioma_tumor", "meningioma_tumor", "no_tumor", "pituitary_tumor"]
|
21 |
+
predicted_class_text = class_names[predicted_class]
|
22 |
+
|
23 |
+
return {"prediction": predicted_class_text, "confidence": confidence}
|
24 |
+
|
25 |
+
# Define the Gradio interface
|
26 |
+
iface = gr.Interface(
|
27 |
+
fn=classify_image,
|
28 |
+
inputs=gr.inputs.Image(),
|
29 |
+
outputs="json",
|
30 |
+
title="Brain Tumor Image Classification",
|
31 |
+
description="This app classifies images of brain tumors into different classes.",
|
32 |
+
)
|
33 |
+
|
34 |
+
# Launch the Gradio interface
|
35 |
+
if __name__ == "__main__":
|
36 |
+
iface.launch()
|