bubbliiiing
Create Code
00db68b
import csv
import gc
import io
import json
import math
import os
import random
from contextlib import contextmanager
from threading import Thread
import albumentations
import cv2
import numpy as np
import torch
import torchvision.transforms as transforms
from decord import VideoReader
from einops import rearrange
from func_timeout import FunctionTimedOut, func_timeout
from PIL import Image
from torch.utils.data import BatchSampler, Sampler
from torch.utils.data.dataset import Dataset
VIDEO_READER_TIMEOUT = 20
def get_random_mask(shape):
f, c, h, w = shape
mask_index = np.random.randint(0, 4)
mask = torch.zeros((f, 1, h, w), dtype=torch.uint8)
if mask_index == 0:
mask[1:, :, :, :] = 1
elif mask_index == 1:
mask_frame_index = 1
mask[mask_frame_index:-mask_frame_index, :, :, :] = 1
elif mask_index == 2:
center_x = torch.randint(0, w, (1,)).item()
center_y = torch.randint(0, h, (1,)).item()
block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item() # 方块的宽度范围
block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item() # 方块的高度范围
start_x = max(center_x - block_size_x // 2, 0)
end_x = min(center_x + block_size_x // 2, w)
start_y = max(center_y - block_size_y // 2, 0)
end_y = min(center_y + block_size_y // 2, h)
mask[:, :, start_y:end_y, start_x:end_x] = 1
elif mask_index == 3:
center_x = torch.randint(0, w, (1,)).item()
center_y = torch.randint(0, h, (1,)).item()
block_size_x = torch.randint(w // 4, w // 4 * 3, (1,)).item() # 方块的宽度范围
block_size_y = torch.randint(h // 4, h // 4 * 3, (1,)).item() # 方块的高度范围
start_x = max(center_x - block_size_x // 2, 0)
end_x = min(center_x + block_size_x // 2, w)
start_y = max(center_y - block_size_y // 2, 0)
end_y = min(center_y + block_size_y // 2, h)
mask_frame_before = np.random.randint(0, f // 2)
mask_frame_after = np.random.randint(f // 2, f)
mask[mask_frame_before:mask_frame_after, :, start_y:end_y, start_x:end_x] = 1
else:
raise ValueError(f"The mask_index {mask_index} is not define")
return mask
@contextmanager
def VideoReader_contextmanager(*args, **kwargs):
vr = VideoReader(*args, **kwargs)
try:
yield vr
finally:
del vr
gc.collect()
def get_video_reader_batch(video_reader, batch_index):
frames = video_reader.get_batch(batch_index).asnumpy()
return frames
class WebVid10M(Dataset):
def __init__(
self,
csv_path, video_folder,
sample_size=256, sample_stride=4, sample_n_frames=16,
enable_bucket=False, enable_inpaint=False, is_image=False,
):
print(f"loading annotations from {csv_path} ...")
with open(csv_path, 'r') as csvfile:
self.dataset = list(csv.DictReader(csvfile))
self.length = len(self.dataset)
print(f"data scale: {self.length}")
self.video_folder = video_folder
self.sample_stride = sample_stride
self.sample_n_frames = sample_n_frames
self.enable_bucket = enable_bucket
self.enable_inpaint = enable_inpaint
self.is_image = is_image
sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
self.pixel_transforms = transforms.Compose([
transforms.Resize(sample_size[0]),
transforms.CenterCrop(sample_size),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
])
def get_batch(self, idx):
video_dict = self.dataset[idx]
videoid, name, page_dir = video_dict['videoid'], video_dict['name'], video_dict['page_dir']
video_dir = os.path.join(self.video_folder, f"{videoid}.mp4")
video_reader = VideoReader(video_dir)
video_length = len(video_reader)
if not self.is_image:
clip_length = min(video_length, (self.sample_n_frames - 1) * self.sample_stride + 1)
start_idx = random.randint(0, video_length - clip_length)
batch_index = np.linspace(start_idx, start_idx + clip_length - 1, self.sample_n_frames, dtype=int)
else:
batch_index = [random.randint(0, video_length - 1)]
if not self.enable_bucket:
pixel_values = torch.from_numpy(video_reader.get_batch(batch_index).asnumpy()).permute(0, 3, 1, 2).contiguous()
pixel_values = pixel_values / 255.
del video_reader
else:
pixel_values = video_reader.get_batch(batch_index).asnumpy()
if self.is_image:
pixel_values = pixel_values[0]
return pixel_values, name
def __len__(self):
return self.length
def __getitem__(self, idx):
while True:
try:
pixel_values, name = self.get_batch(idx)
break
except Exception as e:
print("Error info:", e)
idx = random.randint(0, self.length-1)
if not self.enable_bucket:
pixel_values = self.pixel_transforms(pixel_values)
if self.enable_inpaint:
mask = get_random_mask(pixel_values.size())
mask_pixel_values = pixel_values * (1 - mask) + torch.ones_like(pixel_values) * -1 * mask
sample = dict(pixel_values=pixel_values, mask_pixel_values=mask_pixel_values, mask=mask, text=name)
else:
sample = dict(pixel_values=pixel_values, text=name)
return sample
class VideoDataset(Dataset):
def __init__(
self,
json_path, video_folder=None,
sample_size=256, sample_stride=4, sample_n_frames=16,
enable_bucket=False, enable_inpaint=False
):
print(f"loading annotations from {json_path} ...")
self.dataset = json.load(open(json_path, 'r'))
self.length = len(self.dataset)
print(f"data scale: {self.length}")
self.video_folder = video_folder
self.sample_stride = sample_stride
self.sample_n_frames = sample_n_frames
self.enable_bucket = enable_bucket
self.enable_inpaint = enable_inpaint
sample_size = tuple(sample_size) if not isinstance(sample_size, int) else (sample_size, sample_size)
self.pixel_transforms = transforms.Compose(
[
transforms.Resize(sample_size[0]),
transforms.CenterCrop(sample_size),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
]
)
def get_batch(self, idx):
video_dict = self.dataset[idx]
video_id, name = video_dict['file_path'], video_dict['text']
if self.video_folder is None:
video_dir = video_id
else:
video_dir = os.path.join(self.video_folder, video_id)
with VideoReader_contextmanager(video_dir, num_threads=2) as video_reader:
video_length = len(video_reader)
clip_length = min(video_length, (self.sample_n_frames - 1) * self.sample_stride + 1)
start_idx = random.randint(0, video_length - clip_length)
batch_index = np.linspace(start_idx, start_idx + clip_length - 1, self.sample_n_frames, dtype=int)
try:
sample_args = (video_reader, batch_index)
pixel_values = func_timeout(
VIDEO_READER_TIMEOUT, get_video_reader_batch, args=sample_args
)
except FunctionTimedOut:
raise ValueError(f"Read {idx} timeout.")
except Exception as e:
raise ValueError(f"Failed to extract frames from video. Error is {e}.")
if not self.enable_bucket:
pixel_values = torch.from_numpy(pixel_values).permute(0, 3, 1, 2).contiguous()
pixel_values = pixel_values / 255.
del video_reader
else:
pixel_values = pixel_values
return pixel_values, name
def __len__(self):
return self.length
def __getitem__(self, idx):
while True:
try:
pixel_values, name = self.get_batch(idx)
break
except Exception as e:
print("Error info:", e)
idx = random.randint(0, self.length-1)
if not self.enable_bucket:
pixel_values = self.pixel_transforms(pixel_values)
if self.enable_inpaint:
mask = get_random_mask(pixel_values.size())
mask_pixel_values = pixel_values * (1 - mask) + torch.ones_like(pixel_values) * -1 * mask
sample = dict(pixel_values=pixel_values, mask_pixel_values=mask_pixel_values, mask=mask, text=name)
else:
sample = dict(pixel_values=pixel_values, text=name)
return sample
if __name__ == "__main__":
if 1:
dataset = VideoDataset(
json_path="/home/zhoumo.xjq/disk3/datasets/webvidval/results_2M_val.json",
sample_size=256,
sample_stride=4, sample_n_frames=16,
)
if 0:
dataset = WebVid10M(
csv_path="/mnt/petrelfs/guoyuwei/projects/datasets/webvid/results_2M_val.csv",
video_folder="/mnt/petrelfs/guoyuwei/projects/datasets/webvid/2M_val",
sample_size=256,
sample_stride=4, sample_n_frames=16,
is_image=False,
)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=4, num_workers=0,)
for idx, batch in enumerate(dataloader):
print(batch["pixel_values"].shape, len(batch["text"]))