import os import gradio as gr import matplotlib.pyplot as plt from transformers import ViTForImageClassification, TrainingArguments, Trainer from datasets import load_dataset def finetune_model(epochs, save_at_num_epoch, learning_rate): # Load the dataset dataset = load_dataset("imagenet") # Initialize the model model = ViTForImageClassification.from_pretrained("google/vit-base-patch16-224") # Define the training arguments training_args = TrainingArguments( output_dir="vit-finetuned", num_train_epochs=epochs, save_strategy="steps", save_steps=save_at_num_epoch, learning_rate=learning_rate, ) # Create the trainer and fine-tune the model trainer = Trainer(model=model, args=training_args, train_dataset=dataset["train"]) train_metrics = trainer.train() # Save the fine-tuned model model.save_pretrained("vit-finetuned") # Plot the loss graph plt.figure(figsize=(8, 6)) plt.plot(train_metrics.history["loss"]) plt.title("Model Loss") plt.xlabel("Epoch") plt.ylabel("Loss") plt.savefig("loss_graph.png") return "Fine-tuning complete!" # Create the Gradio interface with gr.Blocks() as demo: gr.Markdown("# Fine-Tune a Model") with gr.Column(): epochs = gr.Slider(label="Epochs", minimum=1, maximum=10, value=3) save_at_num_epoch = gr.Slider(label="Save Model Every X Epochs", minimum=1, maximum=epochs, value=1) learning_rate = gr.Slider(label="Learning Rate", minimum=1e-5, maximum=1e-3, value=2e-5) run_button = gr.Button("Fine-Tune Model") status = gr.Textbox(label="Fine-Tuning Status") loss_graph = gr.Image(label="Loss Graph") run_button.click(finetune_model, inputs=[epochs, save_at_num_epoch, learning_rate], outputs=[status, loss_graph]) if __name__ == "__main__": demo.launch()