Spaces:
Running
Running
File size: 6,531 Bytes
43ed08d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import torch
import torch.nn.functional as F
from torch import nn
def cast_tuple(t, length = 1):
return t if isinstance(t, tuple) else ((t,) * length)
def divisible_by(num, den):
return (num % den) == 0
def is_odd(n):
return not divisible_by(n, 2)
class CausalConv3d(nn.Module):
def __init__(
self,
chan_in,
chan_out,
kernel_size,
pad_mode = 'constant',
**kwargs
):
super().__init__()
kernel_size = cast_tuple(kernel_size, 3)
time_kernel_size, height_kernel_size, width_kernel_size = kernel_size
assert is_odd(height_kernel_size) and is_odd(width_kernel_size)
dilation = kwargs.pop('dilation', 1)
stride = kwargs.pop('stride', 1)
self.pad_mode = pad_mode
time_pad = dilation * (time_kernel_size - 1) + (1 - stride)
height_pad = height_kernel_size // 2
width_pad = width_kernel_size // 2
self.time_pad = time_pad
self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0)
stride = (stride, 1, 1)
dilation = (dilation, 1, 1)
self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride = stride, dilation = dilation, **kwargs)
def forward(self, x):
x = F.pad(x, self.time_causal_padding, mode = 'replicate')
return self.conv(x)
class Swish(nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, x):
return x * F.sigmoid(x)
class ResBlockX(nn.Module):
def __init__(self, inchannel) -> None:
super().__init__()
self.conv = nn.Sequential(
nn.GroupNorm(32, inchannel),
Swish(),
CausalConv3d(inchannel, inchannel, 3),
nn.GroupNorm(32, inchannel),
Swish(),
CausalConv3d(inchannel, inchannel, 3)
)
def forward(self, x):
return x + self.conv(x)
class ResBlockXY(nn.Module):
def __init__(self, inchannel, outchannel) -> None:
super().__init__()
self.conv = nn.Sequential(
nn.GroupNorm(32, inchannel),
Swish(),
CausalConv3d(inchannel, outchannel, 3),
nn.GroupNorm(32, outchannel),
Swish(),
CausalConv3d(outchannel, outchannel, 3)
)
self.conv_1 = nn.Conv3d(inchannel, outchannel, 1)
def forward(self, x):
return self.conv_1(x) + self.conv(x)
class PoolDown222(nn.Module):
def __init__(self) -> None:
super().__init__()
self.pool = nn.AvgPool3d(2, 2)
def forward(self, x):
x = F.pad(x, (0, 0, 0, 0, 1, 0), 'replicate')
return self.pool(x)
class PoolDown122(nn.Module):
def __init__(self) -> None:
super().__init__()
self.pool = nn.AvgPool3d((1, 2, 2), (1, 2, 2))
def forward(self, x):
return self.pool(x)
class Unpool222(nn.Module):
def __init__(self) -> None:
super().__init__()
self.up = nn.Upsample(scale_factor=2, mode='nearest')
def forward(self, x):
x = self.up(x)
return x[:, :, 1:]
class Unpool122(nn.Module):
def __init__(self) -> None:
super().__init__()
self.up = nn.Upsample(scale_factor=(1, 2, 2), mode='nearest')
def forward(self, x):
x = self.up(x)
return x
class ResBlockDown(nn.Module):
def __init__(self, inchannel, outchannel) -> None:
super().__init__()
self.blcok = nn.Sequential(
CausalConv3d(inchannel, outchannel, 3),
nn.LeakyReLU(inplace=True),
PoolDown222(),
CausalConv3d(outchannel, outchannel, 3),
nn.LeakyReLU(inplace=True)
)
self.res = nn.Sequential(
PoolDown222(),
nn.Conv3d(inchannel, outchannel, 1)
)
def forward(self, x):
return self.res(x) + self.blcok(x)
class Discriminator(nn.Module):
def __init__(self) -> None:
super().__init__()
self.block = nn.Sequential(
CausalConv3d(3, 64, 3),
nn.LeakyReLU(inplace=True),
ResBlockDown(64, 128),
ResBlockDown(128, 256),
ResBlockDown(256, 256),
ResBlockDown(256, 256),
ResBlockDown(256, 256),
CausalConv3d(256, 256, 3),
nn.LeakyReLU(inplace=True),
nn.AdaptiveAvgPool3d(1),
nn.Flatten(),
nn.Linear(256, 256),
nn.LeakyReLU(inplace=True),
nn.Linear(256, 1)
)
def forward(self, x):
if x.ndim==4:
x = x.unsqueeze(2)
return self.block(x)
class Encoder(nn.Module):
def __init__(self) -> None:
super().__init__()
self.encoder = nn.Sequential(
CausalConv3d(3, 64, 3),
ResBlockX(64),
ResBlockX(64),
PoolDown222(),
ResBlockXY(64, 128),
ResBlockX(128),
PoolDown222(),
ResBlockX(128),
ResBlockX(128),
PoolDown122(),
ResBlockXY(128, 256),
ResBlockX(256),
ResBlockX(256),
ResBlockX(256),
nn.GroupNorm(32, 256),
Swish(),
nn.Conv3d(256, 16, 1)
)
def forward(self, x):
return self.encoder(x)
class Decoder(nn.Module):
def __init__(self) -> None:
super().__init__()
self.decoder = nn.Sequential(
CausalConv3d(8, 256, 3),
ResBlockX(256),
ResBlockX(256),
ResBlockX(256),
ResBlockX(256),
Unpool122(),
CausalConv3d(256, 256, 3),
ResBlockXY(256, 128),
ResBlockX(128),
Unpool222(),
CausalConv3d(128, 128, 3),
ResBlockX(128),
ResBlockX(128),
Unpool222(),
CausalConv3d(128, 128, 3),
ResBlockXY(128, 64),
ResBlockX(64),
nn.GroupNorm(32, 64),
Swish(),
CausalConv3d(64, 64, 3)
)
self.conv_out = nn.Conv3d(64, 3, 1)
def forward(self, x):
return self.conv_out(self.decoder(x))
if __name__=='__main__':
encoder = Encoder()
decoder = Decoder()
dis = Discriminator()
x = torch.randn((1, 3, 1, 64, 64))
embedding = encoder(x)
y = decoder(embedding)
tmp = torch.randn((1, 4, 1, 64, 64))
print('something mmm') |