File size: 11,987 Bytes
43ed08d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import itertools
from dataclasses import dataclass
from typing import Optional

import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F

from ..util import instantiate_from_config
from .omnigen_enc_dec import Decoder as omnigen_Mag_Decoder
from .omnigen_enc_dec import Encoder as omnigen_Mag_Encoder


class DiagonalGaussianDistribution:
    def __init__(
        self,
        mean: torch.Tensor,
        logvar: torch.Tensor,
        deterministic: bool = False,
    ):
        self.mean = mean
        self.logvar = torch.clamp(logvar, -30.0, 20.0)
        self.deterministic = deterministic

        if deterministic:
            self.var = self.std = torch.zeros_like(self.mean)
        else:
            self.std = torch.exp(0.5 * self.logvar)
            self.var = torch.exp(self.logvar)

    def sample(self, generator = None) -> torch.FloatTensor:
        x = torch.randn(
            self.mean.shape,
            generator=generator,
            device=self.mean.device,
            dtype=self.mean.dtype,
        )
        return self.mean + self.std * x

    def mode(self):
        return self.mean

    def kl(self, other: Optional["DiagonalGaussianDistribution"] = None) -> torch.Tensor:
        dims = list(range(1, self.mean.ndim))

        if self.deterministic:
            return torch.Tensor([0.0])
        else:
            if other is None:
                return 0.5 * torch.sum(
                    torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
                    dim=dims,
                )
            else:
                return 0.5 * torch.sum(
                    torch.pow(self.mean - other.mean, 2) / other.var
                    + self.var / other.var
                    - 1.0
                    - self.logvar
                    + other.logvar,
                    dim=dims,
                )

    def nll(self, sample: torch.Tensor) -> torch.Tensor:
        dims = list(range(1, self.mean.ndim))

        if self.deterministic:
            return torch.Tensor([0.0])

        logtwopi = np.log(2.0 * np.pi)
        return 0.5 * torch.sum(
            logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
            dim=dims,
        )

@dataclass
class EncoderOutput:
    latent_dist: DiagonalGaussianDistribution

@dataclass
class DecoderOutput:
    sample: torch.Tensor

def str_eval(item):
    if type(item) == str:
        return eval(item)
    else:
        return item

class AutoencoderKLMagvit_fromOmnigen(pl.LightningModule):
    def __init__(
        self,
        in_channels: int = 3,
        out_channels: int = 3,
        ch =  128,
        ch_mult = [ 1,2,4,4 ],
        use_gc_blocks = None,
        down_block_types: tuple = None,
        up_block_types: tuple = None,
        mid_block_type: str = "MidBlock3D",
        mid_block_use_attention: bool = True,
        mid_block_attention_type: str = "3d",
        mid_block_num_attention_heads: int = 1,
        layers_per_block: int = 2,
        act_fn: str = "silu",
        num_attention_heads: int = 1,
        latent_channels: int = 4,
        norm_num_groups: int = 32,
        image_key="image",
        monitor=None,
        ckpt_path=None,
        lossconfig=None,
        slice_compression_vae=False,
        mini_batch_encoder=9,
        mini_batch_decoder=3,
        train_decoder_only=False,
    ):
        super().__init__()
        self.image_key = image_key
        down_block_types = str_eval(down_block_types)
        up_block_types = str_eval(up_block_types)
        self.encoder = omnigen_Mag_Encoder(
            in_channels=in_channels,
            out_channels=latent_channels,
            down_block_types=down_block_types,
            ch = ch,
            ch_mult = ch_mult,
            use_gc_blocks=use_gc_blocks,
            mid_block_type=mid_block_type,
            mid_block_use_attention=mid_block_use_attention,
            mid_block_attention_type=mid_block_attention_type,
            mid_block_num_attention_heads=mid_block_num_attention_heads,
            layers_per_block=layers_per_block,
            norm_num_groups=norm_num_groups,
            act_fn=act_fn,
            num_attention_heads=num_attention_heads,
            double_z=True,
            slice_compression_vae=slice_compression_vae,
            mini_batch_encoder=mini_batch_encoder,
        )

        self.decoder = omnigen_Mag_Decoder(
            in_channels=latent_channels,
            out_channels=out_channels,
            up_block_types=up_block_types,
            ch = ch,
            ch_mult = ch_mult,
            use_gc_blocks=use_gc_blocks,
            mid_block_type=mid_block_type,
            mid_block_use_attention=mid_block_use_attention,
            mid_block_attention_type=mid_block_attention_type,
            mid_block_num_attention_heads=mid_block_num_attention_heads,
            layers_per_block=layers_per_block,
            norm_num_groups=norm_num_groups,
            act_fn=act_fn,
            num_attention_heads=num_attention_heads,
            slice_compression_vae=slice_compression_vae,
            mini_batch_decoder=mini_batch_decoder,
        )

        self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1)
        self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1)

        self.mini_batch_encoder = mini_batch_encoder
        self.mini_batch_decoder = mini_batch_decoder
        self.train_decoder_only = train_decoder_only
        if train_decoder_only:
            self.encoder.requires_grad_(False)
            self.quant_conv.requires_grad_(False)
        if monitor is not None:
            self.monitor = monitor
        if ckpt_path is not None:
            self.init_from_ckpt(ckpt_path, ignore_keys="loss")
        if lossconfig is not None:
            self.loss = instantiate_from_config(lossconfig)

    def init_from_ckpt(self, path, ignore_keys=list()):
        if path.endswith("safetensors"):
            from safetensors.torch import load_file, safe_open
            sd = load_file(path)
        else:
            sd = torch.load(path, map_location="cpu")
        if "state_dict" in list(sd.keys()):
            sd = sd["state_dict"]
        keys = list(sd.keys())
        for k in keys:
            for ik in ignore_keys:
                if k.startswith(ik):
                    print("Deleting key {} from state_dict.".format(k))
                    del sd[k]
        self.load_state_dict(sd, strict=False) # loss.item can be ignored successfully
        print(f"Restored from {path}")

    def encode(self, x: torch.Tensor) -> EncoderOutput:
        h = self.encoder(x)

        moments: torch.Tensor = self.quant_conv(h)
        mean, logvar = moments.chunk(2, dim=1)
        posterior = DiagonalGaussianDistribution(mean, logvar)

        # return EncoderOutput(latent_dist=posterior)
        return posterior

    def decode(self, z: torch.Tensor) -> DecoderOutput:
        z = self.post_quant_conv(z)

        decoded = self.decoder(z)

        # return DecoderOutput(sample=decoded)
        return decoded


    def forward(self, input, sample_posterior=True):
        if input.ndim==4:
            input = input.unsqueeze(2)
        posterior = self.encode(input)
        if sample_posterior:
            z = posterior.sample()
        else:
            z = posterior.mode()
        # print("stt latent shape", z.shape)
        dec = self.decode(z)
        return dec, posterior

    def get_input(self, batch, k):
        x = batch[k]
        if x.ndim==5:
            x = x.permute(0, 4, 1, 2, 3).to(memory_format=torch.contiguous_format).float()
            return x
        if len(x.shape) == 3:
            x = x[..., None]
        x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
        return x

    def training_step(self, batch, batch_idx, optimizer_idx):
        # tic = time.time()
        inputs = self.get_input(batch, self.image_key)
        # print(f"get_input time {time.time() - tic}")
        # tic = time.time()
        reconstructions, posterior = self(inputs)
        # print(f"model forward time {time.time() - tic}")

        if optimizer_idx == 0:
            # train encoder+decoder+logvar
            aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
                                            last_layer=self.get_last_layer(), split="train")
            self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
            self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
            # print(f"cal loss time {time.time() - tic}")
            return aeloss

        if optimizer_idx == 1:
            # train the discriminator
            discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
                                                last_layer=self.get_last_layer(), split="train")

            self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
            self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
            # print(f"cal loss time {time.time() - tic}")
            return discloss

    def validation_step(self, batch, batch_idx):
        with torch.no_grad():
            inputs = self.get_input(batch, self.image_key)
            reconstructions, posterior = self(inputs)
            aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
                                            last_layer=self.get_last_layer(), split="val")

            discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
                                                last_layer=self.get_last_layer(), split="val")

        self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
        self.log_dict(log_dict_ae)
        self.log_dict(log_dict_disc)
        return self.log_dict

    def configure_optimizers(self):
        lr = self.learning_rate
        if self.train_decoder_only:
            opt_ae = torch.optim.Adam(list(self.decoder.parameters())+
                                    list(self.post_quant_conv.parameters()),
                                    lr=lr, betas=(0.5, 0.9))
        else:
            opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
                                    list(self.decoder.parameters())+
                                    list(self.quant_conv.parameters())+
                                    list(self.post_quant_conv.parameters()),
                                    lr=lr, betas=(0.5, 0.9))
        opt_disc = torch.optim.Adam(list(self.loss.discriminator3d.parameters()) + list(self.loss.discriminator.parameters()),
                                    lr=lr, betas=(0.5, 0.9))
        return [opt_ae, opt_disc], []

    def get_last_layer(self):
        return self.decoder.conv_out.weight

    @torch.no_grad()
    def log_images(self, batch, only_inputs=False, **kwargs):
        log = dict()
        x = self.get_input(batch, self.image_key)
        x = x.to(self.device)
        if not only_inputs:
            xrec, posterior = self(x)
            if x.shape[1] > 3:
                # colorize with random projection
                assert xrec.shape[1] > 3
                x = self.to_rgb(x)
                xrec = self.to_rgb(xrec)
            log["samples"] = self.decode(torch.randn_like(posterior.sample()))
            log["reconstructions"] = xrec
        log["inputs"] = x
        return log

    def to_rgb(self, x):
        assert self.image_key == "segmentation"
        if not hasattr(self, "colorize"):
            self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
        x = F.conv2d(x, weight=self.colorize)
        x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
        return x