Spaces:
Running
Running
File size: 11,987 Bytes
43ed08d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import itertools
from dataclasses import dataclass
from typing import Optional
import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn as nn
import torch.nn.functional as F
from ..util import instantiate_from_config
from .omnigen_enc_dec import Decoder as omnigen_Mag_Decoder
from .omnigen_enc_dec import Encoder as omnigen_Mag_Encoder
class DiagonalGaussianDistribution:
def __init__(
self,
mean: torch.Tensor,
logvar: torch.Tensor,
deterministic: bool = False,
):
self.mean = mean
self.logvar = torch.clamp(logvar, -30.0, 20.0)
self.deterministic = deterministic
if deterministic:
self.var = self.std = torch.zeros_like(self.mean)
else:
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
def sample(self, generator = None) -> torch.FloatTensor:
x = torch.randn(
self.mean.shape,
generator=generator,
device=self.mean.device,
dtype=self.mean.dtype,
)
return self.mean + self.std * x
def mode(self):
return self.mean
def kl(self, other: Optional["DiagonalGaussianDistribution"] = None) -> torch.Tensor:
dims = list(range(1, self.mean.ndim))
if self.deterministic:
return torch.Tensor([0.0])
else:
if other is None:
return 0.5 * torch.sum(
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
dim=dims,
)
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean, 2) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar,
dim=dims,
)
def nll(self, sample: torch.Tensor) -> torch.Tensor:
dims = list(range(1, self.mean.ndim))
if self.deterministic:
return torch.Tensor([0.0])
logtwopi = np.log(2.0 * np.pi)
return 0.5 * torch.sum(
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
dim=dims,
)
@dataclass
class EncoderOutput:
latent_dist: DiagonalGaussianDistribution
@dataclass
class DecoderOutput:
sample: torch.Tensor
def str_eval(item):
if type(item) == str:
return eval(item)
else:
return item
class AutoencoderKLMagvit_fromOmnigen(pl.LightningModule):
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
ch = 128,
ch_mult = [ 1,2,4,4 ],
use_gc_blocks = None,
down_block_types: tuple = None,
up_block_types: tuple = None,
mid_block_type: str = "MidBlock3D",
mid_block_use_attention: bool = True,
mid_block_attention_type: str = "3d",
mid_block_num_attention_heads: int = 1,
layers_per_block: int = 2,
act_fn: str = "silu",
num_attention_heads: int = 1,
latent_channels: int = 4,
norm_num_groups: int = 32,
image_key="image",
monitor=None,
ckpt_path=None,
lossconfig=None,
slice_compression_vae=False,
mini_batch_encoder=9,
mini_batch_decoder=3,
train_decoder_only=False,
):
super().__init__()
self.image_key = image_key
down_block_types = str_eval(down_block_types)
up_block_types = str_eval(up_block_types)
self.encoder = omnigen_Mag_Encoder(
in_channels=in_channels,
out_channels=latent_channels,
down_block_types=down_block_types,
ch = ch,
ch_mult = ch_mult,
use_gc_blocks=use_gc_blocks,
mid_block_type=mid_block_type,
mid_block_use_attention=mid_block_use_attention,
mid_block_attention_type=mid_block_attention_type,
mid_block_num_attention_heads=mid_block_num_attention_heads,
layers_per_block=layers_per_block,
norm_num_groups=norm_num_groups,
act_fn=act_fn,
num_attention_heads=num_attention_heads,
double_z=True,
slice_compression_vae=slice_compression_vae,
mini_batch_encoder=mini_batch_encoder,
)
self.decoder = omnigen_Mag_Decoder(
in_channels=latent_channels,
out_channels=out_channels,
up_block_types=up_block_types,
ch = ch,
ch_mult = ch_mult,
use_gc_blocks=use_gc_blocks,
mid_block_type=mid_block_type,
mid_block_use_attention=mid_block_use_attention,
mid_block_attention_type=mid_block_attention_type,
mid_block_num_attention_heads=mid_block_num_attention_heads,
layers_per_block=layers_per_block,
norm_num_groups=norm_num_groups,
act_fn=act_fn,
num_attention_heads=num_attention_heads,
slice_compression_vae=slice_compression_vae,
mini_batch_decoder=mini_batch_decoder,
)
self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1)
self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1)
self.mini_batch_encoder = mini_batch_encoder
self.mini_batch_decoder = mini_batch_decoder
self.train_decoder_only = train_decoder_only
if train_decoder_only:
self.encoder.requires_grad_(False)
self.quant_conv.requires_grad_(False)
if monitor is not None:
self.monitor = monitor
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys="loss")
if lossconfig is not None:
self.loss = instantiate_from_config(lossconfig)
def init_from_ckpt(self, path, ignore_keys=list()):
if path.endswith("safetensors"):
from safetensors.torch import load_file, safe_open
sd = load_file(path)
else:
sd = torch.load(path, map_location="cpu")
if "state_dict" in list(sd.keys()):
sd = sd["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
self.load_state_dict(sd, strict=False) # loss.item can be ignored successfully
print(f"Restored from {path}")
def encode(self, x: torch.Tensor) -> EncoderOutput:
h = self.encoder(x)
moments: torch.Tensor = self.quant_conv(h)
mean, logvar = moments.chunk(2, dim=1)
posterior = DiagonalGaussianDistribution(mean, logvar)
# return EncoderOutput(latent_dist=posterior)
return posterior
def decode(self, z: torch.Tensor) -> DecoderOutput:
z = self.post_quant_conv(z)
decoded = self.decoder(z)
# return DecoderOutput(sample=decoded)
return decoded
def forward(self, input, sample_posterior=True):
if input.ndim==4:
input = input.unsqueeze(2)
posterior = self.encode(input)
if sample_posterior:
z = posterior.sample()
else:
z = posterior.mode()
# print("stt latent shape", z.shape)
dec = self.decode(z)
return dec, posterior
def get_input(self, batch, k):
x = batch[k]
if x.ndim==5:
x = x.permute(0, 4, 1, 2, 3).to(memory_format=torch.contiguous_format).float()
return x
if len(x.shape) == 3:
x = x[..., None]
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
return x
def training_step(self, batch, batch_idx, optimizer_idx):
# tic = time.time()
inputs = self.get_input(batch, self.image_key)
# print(f"get_input time {time.time() - tic}")
# tic = time.time()
reconstructions, posterior = self(inputs)
# print(f"model forward time {time.time() - tic}")
if optimizer_idx == 0:
# train encoder+decoder+logvar
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
last_layer=self.get_last_layer(), split="train")
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
# print(f"cal loss time {time.time() - tic}")
return aeloss
if optimizer_idx == 1:
# train the discriminator
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
last_layer=self.get_last_layer(), split="train")
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
# print(f"cal loss time {time.time() - tic}")
return discloss
def validation_step(self, batch, batch_idx):
with torch.no_grad():
inputs = self.get_input(batch, self.image_key)
reconstructions, posterior = self(inputs)
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
last_layer=self.get_last_layer(), split="val")
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
last_layer=self.get_last_layer(), split="val")
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
self.log_dict(log_dict_ae)
self.log_dict(log_dict_disc)
return self.log_dict
def configure_optimizers(self):
lr = self.learning_rate
if self.train_decoder_only:
opt_ae = torch.optim.Adam(list(self.decoder.parameters())+
list(self.post_quant_conv.parameters()),
lr=lr, betas=(0.5, 0.9))
else:
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
list(self.decoder.parameters())+
list(self.quant_conv.parameters())+
list(self.post_quant_conv.parameters()),
lr=lr, betas=(0.5, 0.9))
opt_disc = torch.optim.Adam(list(self.loss.discriminator3d.parameters()) + list(self.loss.discriminator.parameters()),
lr=lr, betas=(0.5, 0.9))
return [opt_ae, opt_disc], []
def get_last_layer(self):
return self.decoder.conv_out.weight
@torch.no_grad()
def log_images(self, batch, only_inputs=False, **kwargs):
log = dict()
x = self.get_input(batch, self.image_key)
x = x.to(self.device)
if not only_inputs:
xrec, posterior = self(x)
if x.shape[1] > 3:
# colorize with random projection
assert xrec.shape[1] > 3
x = self.to_rgb(x)
xrec = self.to_rgb(xrec)
log["samples"] = self.decode(torch.randn_like(posterior.sample()))
log["reconstructions"] = xrec
log["inputs"] = x
return log
def to_rgb(self, x):
assert self.image_key == "segmentation"
if not hasattr(self, "colorize"):
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
x = F.conv2d(x, weight=self.colorize)
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
return x
|