Spaces:
Running
Running
File size: 16,977 Bytes
43ed08d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import torch
import torch.nn as nn
import numpy as np
from ..modules.vaemodules.activations import get_activation
from ..modules.vaemodules.common import CausalConv3d
from ..modules.vaemodules.down_blocks import get_down_block
from ..modules.vaemodules.mid_blocks import get_mid_block
from ..modules.vaemodules.up_blocks import get_up_block
class Encoder(nn.Module):
r"""
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
Args:
in_channels (`int`, *optional*, defaults to 3):
The number of input channels.
out_channels (`int`, *optional*, defaults to 8):
The number of output channels.
down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("SpatialDownBlock3D",)`):
The types of down blocks to use.
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
The number of output channels for each block.
use_gc_blocks (`Tuple[bool, ...]`, *optional*, defaults to `None`):
Whether to use global context blocks for each down block.
mid_block_type (`str`, *optional*, defaults to `"MidBlock3D"`):
The type of mid block to use.
layers_per_block (`int`, *optional*, defaults to 2):
The number of layers per block.
norm_num_groups (`int`, *optional*, defaults to 32):
The number of groups for normalization.
act_fn (`str`, *optional*, defaults to `"silu"`):
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
num_attention_heads (`int`, *optional*, defaults to 1):
The number of attention heads to use.
double_z (`bool`, *optional*, defaults to `True`):
Whether to double the number of output channels for the last block.
"""
def __init__(
self,
in_channels: int = 3,
out_channels: int = 8,
down_block_types = ("SpatialDownBlock3D",),
ch = 128,
ch_mult = [1,2,4,4,],
use_gc_blocks = None,
mid_block_type: str = "MidBlock3D",
mid_block_use_attention: bool = True,
mid_block_attention_type: str = "3d",
mid_block_num_attention_heads: int = 1,
layers_per_block: int = 2,
norm_num_groups: int = 32,
act_fn: str = "silu",
num_attention_heads: int = 1,
double_z: bool = True,
slice_compression_vae: bool = False,
mini_batch_encoder: int = 9,
verbose = False,
):
super().__init__()
block_out_channels = [ch * i for i in ch_mult]
assert len(down_block_types) == len(block_out_channels), (
"Number of down block types must match number of block output channels."
)
if use_gc_blocks is not None:
assert len(use_gc_blocks) == len(down_block_types), (
"Number of GC blocks must match number of down block types."
)
else:
use_gc_blocks = [False] * len(down_block_types)
self.conv_in = CausalConv3d(
in_channels,
block_out_channels[0],
kernel_size=3,
)
self.down_blocks = nn.ModuleList([])
output_channels = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channels = output_channels
output_channels = block_out_channels[i]
is_final_block = (i == len(block_out_channels) - 1)
down_block = get_down_block(
down_block_type,
in_channels=input_channels,
out_channels=output_channels,
num_layers=layers_per_block,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
norm_eps=1e-6,
num_attention_heads=num_attention_heads,
add_gc_block=use_gc_blocks[i],
add_downsample=not is_final_block,
)
self.down_blocks.append(down_block)
self.mid_block = get_mid_block(
mid_block_type,
in_channels=block_out_channels[-1],
num_layers=layers_per_block,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
norm_eps=1e-6,
add_attention=mid_block_use_attention,
attention_type=mid_block_attention_type,
num_attention_heads=mid_block_num_attention_heads,
)
self.conv_norm_out = nn.GroupNorm(
num_channels=block_out_channels[-1],
num_groups=norm_num_groups,
eps=1e-6,
)
self.conv_act = get_activation(act_fn)
conv_out_channels = 2 * out_channels if double_z else out_channels
self.conv_out = CausalConv3d(block_out_channels[-1], conv_out_channels, kernel_size=3)
self.slice_compression_vae = slice_compression_vae
self.mini_batch_encoder = mini_batch_encoder
self.features_share = False
self.verbose = verbose
def set_padding_one_frame(self):
def _set_padding_one_frame(name, module):
if hasattr(module, 'padding_flag'):
if self.verbose:
print('Set pad mode for module[%s] type=%s' % (name, str(type(module))))
module.padding_flag = 1
for sub_name, sub_mod in module.named_children():
_set_padding_one_frame(sub_name, sub_mod)
for name, module in self.named_children():
_set_padding_one_frame(name, module)
def set_padding_more_frame(self):
def _set_padding_more_frame(name, module):
if hasattr(module, 'padding_flag'):
if self.verbose:
print('Set pad mode for module[%s] type=%s' % (name, str(type(module))))
module.padding_flag = 2
for sub_name, sub_mod in module.named_children():
_set_padding_more_frame(sub_name, sub_mod)
for name, module in self.named_children():
_set_padding_more_frame(name, module)
def single_forward(self, x: torch.Tensor, previous_features: torch.Tensor, after_features: torch.Tensor) -> torch.Tensor:
# x: (B, C, T, H, W)
if self.features_share and previous_features is not None and after_features is None:
x = torch.concat([previous_features, x], 2)
elif self.features_share and previous_features is None and after_features is not None:
x = torch.concat([x, after_features], 2)
elif self.features_share and previous_features is not None and after_features is not None:
x = torch.concat([previous_features, x, after_features], 2)
x = self.conv_in(x)
for down_block in self.down_blocks:
x = down_block(x)
x = self.mid_block(x)
x = self.conv_norm_out(x)
x = self.conv_act(x)
x = self.conv_out(x)
if self.features_share and previous_features is not None and after_features is None:
x = x[:, :, 1:]
elif self.features_share and previous_features is None and after_features is not None:
x = x[:, :, :2]
elif self.features_share and previous_features is not None and after_features is not None:
x = x[:, :, 1:3]
return x
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.slice_compression_vae:
_, _, f, _, _ = x.size()
if f % 2 != 0:
self.set_padding_one_frame()
first_frames = self.single_forward(x[:, :, 0:1, :, :], None, None)
self.set_padding_more_frame()
new_pixel_values = [first_frames]
start_index = 1
else:
self.set_padding_more_frame()
new_pixel_values = []
start_index = 0
previous_features = None
for i in range(start_index, x.shape[2], self.mini_batch_encoder):
after_features = x[:, :, i + self.mini_batch_encoder: i + self.mini_batch_encoder + 4, :, :] if i + self.mini_batch_encoder < x.shape[2] else None
next_frames = self.single_forward(x[:, :, i: i + self.mini_batch_encoder, :, :], previous_features, after_features)
previous_features = x[:, :, i + self.mini_batch_encoder - 4: i + self.mini_batch_encoder, :, :]
new_pixel_values.append(next_frames)
new_pixel_values = torch.cat(new_pixel_values, dim=2)
else:
new_pixel_values = self.single_forward(x, None, None)
return new_pixel_values
class Decoder(nn.Module):
r"""
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.
Args:
in_channels (`int`, *optional*, defaults to 8):
The number of input channels.
out_channels (`int`, *optional*, defaults to 3):
The number of output channels.
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("SpatialUpBlock3D",)`):
The types of up blocks to use.
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
The number of output channels for each block.
use_gc_blocks (`Tuple[bool, ...]`, *optional*, defaults to `None`):
Whether to use global context blocks for each down block.
mid_block_type (`str`, *optional*, defaults to `"MidBlock3D"`):
The type of mid block to use.
layers_per_block (`int`, *optional*, defaults to 2):
The number of layers per block.
norm_num_groups (`int`, *optional*, defaults to 32):
The number of groups for normalization.
act_fn (`str`, *optional*, defaults to `"silu"`):
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
num_attention_heads (`int`, *optional*, defaults to 1):
The number of attention heads to use.
"""
def __init__(
self,
in_channels: int = 8,
out_channels: int = 3,
up_block_types = ("SpatialUpBlock3D",),
ch = 128,
ch_mult = [1,2,4,4,],
use_gc_blocks = None,
mid_block_type: str = "MidBlock3D",
mid_block_use_attention: bool = True,
mid_block_attention_type: str = "3d",
mid_block_num_attention_heads: int = 1,
layers_per_block: int = 2,
norm_num_groups: int = 32,
act_fn: str = "silu",
num_attention_heads: int = 1,
slice_compression_vae: bool = False,
mini_batch_decoder: int = 3,
verbose = False,
):
super().__init__()
block_out_channels = [ch * i for i in ch_mult]
assert len(up_block_types) == len(block_out_channels), (
"Number of up block types must match number of block output channels."
)
if use_gc_blocks is not None:
assert len(use_gc_blocks) == len(up_block_types), (
"Number of GC blocks must match number of up block types."
)
else:
use_gc_blocks = [False] * len(up_block_types)
self.conv_in = CausalConv3d(
in_channels,
block_out_channels[-1],
kernel_size=3,
)
self.mid_block = get_mid_block(
mid_block_type,
in_channels=block_out_channels[-1],
num_layers=layers_per_block,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
norm_eps=1e-6,
add_attention=mid_block_use_attention,
attention_type=mid_block_attention_type,
num_attention_heads=mid_block_num_attention_heads,
)
self.up_blocks = nn.ModuleList([])
reversed_block_out_channels = list(reversed(block_out_channels))
output_channels = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
input_channels = output_channels
output_channels = reversed_block_out_channels[i]
# is_first_block = i == 0
is_final_block = i == len(block_out_channels) - 1
up_block = get_up_block(
up_block_type,
in_channels=input_channels,
out_channels=output_channels,
num_layers=layers_per_block + 1,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
norm_eps=1e-6,
num_attention_heads=num_attention_heads,
add_gc_block=use_gc_blocks[i],
add_upsample=not is_final_block,
)
self.up_blocks.append(up_block)
self.conv_norm_out = nn.GroupNorm(
num_channels=block_out_channels[0],
num_groups=norm_num_groups,
eps=1e-6,
)
self.conv_act = get_activation(act_fn)
self.conv_out = CausalConv3d(block_out_channels[0], out_channels, kernel_size=3)
self.slice_compression_vae = slice_compression_vae
self.mini_batch_decoder = mini_batch_decoder
self.features_share = True
self.verbose = verbose
def set_padding_one_frame(self):
def _set_padding_one_frame(name, module):
if hasattr(module, 'padding_flag'):
if self.verbose:
print('Set pad mode for module[%s] type=%s' % (name, str(type(module))))
module.padding_flag = 1
for sub_name, sub_mod in module.named_children():
_set_padding_one_frame(sub_name, sub_mod)
for name, module in self.named_children():
_set_padding_one_frame(name, module)
def set_padding_more_frame(self):
def _set_padding_more_frame(name, module):
if hasattr(module, 'padding_flag'):
if self.verbose:
print('Set pad mode for module[%s] type=%s' % (name, str(type(module))))
module.padding_flag = 2
for sub_name, sub_mod in module.named_children():
_set_padding_more_frame(sub_name, sub_mod)
for name, module in self.named_children():
_set_padding_more_frame(name, module)
def single_forward(self, x: torch.Tensor, previous_features: torch.Tensor, after_features: torch.Tensor) -> torch.Tensor:
# x: (B, C, T, H, W)
if self.features_share and previous_features is not None and after_features is None:
b, c, t, h, w = x.size()
x = torch.concat([previous_features, x], 2)
x = self.conv_in(x)
x = self.mid_block(x)
x = x[:, :, -t:]
elif self.features_share and previous_features is None and after_features is not None:
b, c, t, h, w = x.size()
x = torch.concat([x, after_features], 2)
x = self.conv_in(x)
x = self.mid_block(x)
x = x[:, :, :t]
elif self.features_share and previous_features is not None and after_features is not None:
_, _, t_1, _, _ = previous_features.size()
_, _, t_2, _, _ = x.size()
x = torch.concat([previous_features, x, after_features], 2)
x = self.conv_in(x)
x = self.mid_block(x)
x = x[:, :, t_1:(t_1 + t_2)]
else:
x = self.conv_in(x)
x = self.mid_block(x)
for up_block in self.up_blocks:
x = up_block(x)
x = self.conv_norm_out(x)
x = self.conv_act(x)
x = self.conv_out(x)
return x
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.slice_compression_vae:
_, _, f, _, _ = x.size()
if f % 2 != 0:
self.set_padding_one_frame()
first_frames = self.single_forward(x[:, :, 0:1, :, :], None, None)
self.set_padding_more_frame()
new_pixel_values = [first_frames]
start_index = 1
else:
self.set_padding_more_frame()
new_pixel_values = []
start_index = 0
previous_features = None
for i in range(start_index, x.shape[2], self.mini_batch_decoder):
after_features = x[:, :, i + self.mini_batch_decoder: i + 2 * self.mini_batch_decoder, :, :] if i + self.mini_batch_decoder < x.shape[2] else None
next_frames = self.single_forward(x[:, :, i: i + self.mini_batch_decoder, :, :], previous_features, after_features)
previous_features = x[:, :, i: i + self.mini_batch_decoder, :, :]
new_pixel_values.append(next_frames)
new_pixel_values = torch.cat(new_pixel_values, dim=2)
else:
new_pixel_values = self.single_forward(x, None, None)
return new_pixel_values
|