Spaces:
Running
Running
File size: 8,249 Bytes
19fe404 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from .activations import get_activation
def cast_tuple(t, length = 1):
return t if isinstance(t, tuple) else ((t,) * length)
def divisible_by(num, den):
return (num % den) == 0
def is_odd(n):
return not divisible_by(n, 2)
class CausalConv3d(nn.Conv3d):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size=3, # : int | tuple[int, int, int],
stride=1, # : int | tuple[int, int, int] = 1,
padding=1, # : int | tuple[int, int, int], # TODO: change it to 0.
dilation=1, # : int | tuple[int, int, int] = 1,
**kwargs,
):
kernel_size = kernel_size if isinstance(kernel_size, tuple) else (kernel_size,) * 3
assert len(kernel_size) == 3, f"Kernel size must be a 3-tuple, got {kernel_size} instead."
stride = stride if isinstance(stride, tuple) else (stride,) * 3
assert len(stride) == 3, f"Stride must be a 3-tuple, got {stride} instead."
dilation = dilation if isinstance(dilation, tuple) else (dilation,) * 3
assert len(dilation) == 3, f"Dilation must be a 3-tuple, got {dilation} instead."
t_ks, h_ks, w_ks = kernel_size
_, h_stride, w_stride = stride
t_dilation, h_dilation, w_dilation = dilation
t_pad = (t_ks - 1) * t_dilation
# TODO: align with SD
if padding is None:
h_pad = math.ceil(((h_ks - 1) * h_dilation + (1 - h_stride)) / 2)
w_pad = math.ceil(((w_ks - 1) * w_dilation + (1 - w_stride)) / 2)
elif isinstance(padding, int):
h_pad = w_pad = padding
else:
assert NotImplementedError
self.temporal_padding = t_pad
self.temporal_padding_origin = math.ceil(((t_ks - 1) * w_dilation + (1 - w_stride)) / 2)
self.padding_flag = 0
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
dilation=dilation,
padding=(0, h_pad, w_pad),
**kwargs,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
# x: (B, C, T, H, W)
if self.padding_flag == 0:
x = F.pad(
x,
pad=(0, 0, 0, 0, self.temporal_padding, 0),
mode="replicate", # TODO: check if this is necessary
)
else:
x = F.pad(
x,
pad=(0, 0, 0, 0, self.temporal_padding_origin, self.temporal_padding_origin),
)
return super().forward(x)
def set_padding_one_frame(self):
def _set_padding_one_frame(name, module):
if hasattr(module, 'padding_flag'):
print('Set pad mode for module[%s] type=%s' % (name, str(type(module))))
module.padding_flag = 1
for sub_name, sub_mod in module.named_children():
_set_padding_one_frame(sub_name, sub_mod)
for name, module in self.named_children():
_set_padding_one_frame(name, module)
def set_padding_more_frame(self):
def _set_padding_more_frame(name, module):
if hasattr(module, 'padding_flag'):
print('Set pad mode for module[%s] type=%s' % (name, str(type(module))))
module.padding_flag = 2
for sub_name, sub_mod in module.named_children():
_set_padding_more_frame(sub_name, sub_mod)
for name, module in self.named_children():
_set_padding_more_frame(name, module)
class ResidualBlock2D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
non_linearity: str = "silu",
norm_num_groups: int = 32,
norm_eps: float = 1e-6,
dropout: float = 0.0,
output_scale_factor: float = 1.0,
):
super().__init__()
self.output_scale_factor = output_scale_factor
self.norm1 = nn.GroupNorm(
num_groups=norm_num_groups,
num_channels=in_channels,
eps=norm_eps,
affine=True,
)
self.nonlinearity = get_activation(non_linearity)
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
self.norm2 = nn.GroupNorm(
num_groups=norm_num_groups,
num_channels=out_channels,
eps=norm_eps,
affine=True,
)
self.dropout = nn.Dropout(dropout)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1)
if in_channels != out_channels:
self.shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1)
else:
self.shortcut = nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
shortcut = self.shortcut(x)
x = self.norm1(x)
x = self.nonlinearity(x)
x = self.conv1(x)
x = self.norm2(x)
x = self.nonlinearity(x)
x = self.dropout(x)
x = self.conv2(x)
return (x + shortcut) / self.output_scale_factor
class ResidualBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
non_linearity: str = "silu",
norm_num_groups: int = 32,
norm_eps: float = 1e-6,
dropout: float = 0.0,
output_scale_factor: float = 1.0,
):
super().__init__()
self.output_scale_factor = output_scale_factor
self.norm1 = nn.GroupNorm(
num_groups=norm_num_groups,
num_channels=in_channels,
eps=norm_eps,
affine=True,
)
self.nonlinearity = get_activation(non_linearity)
self.conv1 = CausalConv3d(in_channels, out_channels, kernel_size=3)
self.norm2 = nn.GroupNorm(
num_groups=norm_num_groups,
num_channels=out_channels,
eps=norm_eps,
affine=True,
)
self.dropout = nn.Dropout(dropout)
self.conv2 = CausalConv3d(out_channels, out_channels, kernel_size=3)
if in_channels != out_channels:
self.shortcut = nn.Conv3d(in_channels, out_channels, kernel_size=1)
else:
self.shortcut = nn.Identity()
def forward(self, x: torch.Tensor) -> torch.Tensor:
shortcut = self.shortcut(x)
x = self.norm1(x)
x = self.nonlinearity(x)
x = self.conv1(x)
x = self.norm2(x)
x = self.nonlinearity(x)
x = self.dropout(x)
x = self.conv2(x)
return (x + shortcut) / self.output_scale_factor
class SpatialNorm2D(nn.Module):
"""
Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002.
Args:
f_channels (`int`):
The number of channels for input to group normalization layer, and output of the spatial norm layer.
zq_channels (`int`):
The number of channels for the quantized vector as described in the paper.
"""
def __init__(
self,
f_channels: int,
zq_channels: int,
):
super().__init__()
self.norm = nn.GroupNorm(num_channels=f_channels, num_groups=32, eps=1e-6, affine=True)
self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)
self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)
def forward(self, f: torch.FloatTensor, zq: torch.FloatTensor) -> torch.FloatTensor:
f_size = f.shape[-2:]
zq = F.interpolate(zq, size=f_size, mode="nearest")
norm_f = self.norm(f)
new_f = norm_f * self.conv_y(zq) + self.conv_b(zq)
return new_f
class SpatialNorm3D(SpatialNorm2D):
def forward(self, f: torch.FloatTensor, zq: torch.FloatTensor) -> torch.FloatTensor:
batch_size = f.shape[0]
f = rearrange(f, "b c t h w -> (b t) c h w")
zq = rearrange(zq, "b c t h w -> (b t) c h w")
x = super().forward(f, zq)
x = rearrange(x, "(b t) c h w -> b c t h w", b=batch_size)
return x
|