Spaces:
Running
Running
File size: 4,300 Bytes
19fe404 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from .common import CausalConv3d
class Downsampler(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
spatial_downsample_factor: int = 1,
temporal_downsample_factor: int = 1,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.spatial_downsample_factor = spatial_downsample_factor
self.temporal_downsample_factor = temporal_downsample_factor
class SpatialDownsampler3D(Downsampler):
def __init__(self, in_channels: int, out_channels):
if out_channels is None:
out_channels = in_channels
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
spatial_downsample_factor=2,
temporal_downsample_factor=1,
)
self.conv = CausalConv3d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=(1, 2, 2),
padding=0,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.pad(x, (0, 1, 0, 1))
return self.conv(x)
class TemporalDownsampler3D(Downsampler):
def __init__(self, in_channels: int, out_channels):
if out_channels is None:
out_channels = in_channels
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
spatial_downsample_factor=1,
temporal_downsample_factor=2,
)
self.conv = CausalConv3d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=(2, 1, 1),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.conv(x)
class SpatialTemporalDownsampler3D(Downsampler):
def __init__(self, in_channels: int, out_channels):
if out_channels is None:
out_channels = in_channels
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
spatial_downsample_factor=2,
temporal_downsample_factor=2,
)
self.conv = CausalConv3d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=(2, 2, 2),
padding=0,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = F.pad(x, (0, 1, 0, 1))
return self.conv(x)
class BlurPooling2D(Downsampler):
def __init__(self, in_channels: int, out_channels):
if out_channels is None:
out_channels = in_channels
assert in_channels == out_channels
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
spatial_downsample_factor=2,
temporal_downsample_factor=1,
)
filt = torch.tensor([1, 2, 1], dtype=torch.float32)
filt = torch.einsum("i,j -> ij", filt, filt)
filt = filt / filt.sum()
filt = filt[None, None].repeat(out_channels, 1, 1, 1)
self.register_buffer("filt", filt)
self.filt: torch.Tensor
def forward(self, x: torch.Tensor) -> torch.Tensor:
# x: (B, C, H, W)
return F.conv2d(x, self.filt, stride=2, padding=1, groups=self.in_channels)
class BlurPooling3D(Downsampler):
def __init__(self, in_channels: int, out_channels):
if out_channels is None:
out_channels = in_channels
assert in_channels == out_channels
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
spatial_downsample_factor=2,
temporal_downsample_factor=2,
)
filt = torch.tensor([1, 2, 1], dtype=torch.float32)
filt = torch.einsum("i,j,k -> ijk", filt, filt, filt)
filt = filt / filt.sum()
filt = filt[None, None].repeat(out_channels, 1, 1, 1, 1)
self.register_buffer("filt", filt)
self.filt: torch.Tensor
def forward(self, x: torch.Tensor) -> torch.Tensor:
# x: (B, C, T, H, W)
return F.conv3d(x, self.filt, stride=2, padding=1, groups=self.in_channels)
|