File size: 4,300 Bytes
19fe404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import torch.nn as nn
import torch.nn.functional as F

from .common import CausalConv3d


class Downsampler(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        spatial_downsample_factor: int = 1,
        temporal_downsample_factor: int = 1,
    ):
        super().__init__()

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.spatial_downsample_factor = spatial_downsample_factor
        self.temporal_downsample_factor = temporal_downsample_factor


class SpatialDownsampler3D(Downsampler):
    def __init__(self, in_channels: int, out_channels):
        if out_channels is None:
            out_channels = in_channels

        super().__init__(
            in_channels=in_channels,
            out_channels=out_channels,
            spatial_downsample_factor=2,
            temporal_downsample_factor=1,
        )

        self.conv = CausalConv3d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=3,
            stride=(1, 2, 2),
            padding=0,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = F.pad(x, (0, 1, 0, 1))
        return self.conv(x)


class TemporalDownsampler3D(Downsampler):
    def __init__(self, in_channels: int, out_channels):
        if out_channels is None:
            out_channels = in_channels

        super().__init__(
            in_channels=in_channels,
            out_channels=out_channels,
            spatial_downsample_factor=1,
            temporal_downsample_factor=2,
        )

        self.conv = CausalConv3d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=3,
            stride=(2, 1, 1),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.conv(x)


class SpatialTemporalDownsampler3D(Downsampler):
    def __init__(self, in_channels: int, out_channels):
        if out_channels is None:
            out_channels = in_channels

        super().__init__(
            in_channels=in_channels,
            out_channels=out_channels,
            spatial_downsample_factor=2,
            temporal_downsample_factor=2,
        )

        self.conv = CausalConv3d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=3,
            stride=(2, 2, 2),
            padding=0,
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = F.pad(x, (0, 1, 0, 1))
        return self.conv(x)


class BlurPooling2D(Downsampler):
    def __init__(self, in_channels: int, out_channels):
        if out_channels is None:
            out_channels = in_channels

        assert in_channels == out_channels

        super().__init__(
            in_channels=in_channels,
            out_channels=out_channels,
            spatial_downsample_factor=2,
            temporal_downsample_factor=1,
        )

        filt = torch.tensor([1, 2, 1], dtype=torch.float32)
        filt = torch.einsum("i,j -> ij", filt, filt)
        filt = filt / filt.sum()
        filt = filt[None, None].repeat(out_channels, 1, 1, 1)

        self.register_buffer("filt", filt)
        self.filt: torch.Tensor

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # x: (B, C, H, W)
        return F.conv2d(x, self.filt, stride=2, padding=1, groups=self.in_channels)


class BlurPooling3D(Downsampler):
    def __init__(self, in_channels: int, out_channels):
        if out_channels is None:
            out_channels = in_channels

        assert in_channels == out_channels

        super().__init__(
            in_channels=in_channels,
            out_channels=out_channels,
            spatial_downsample_factor=2,
            temporal_downsample_factor=2,
        )

        filt = torch.tensor([1, 2, 1], dtype=torch.float32)
        filt = torch.einsum("i,j,k -> ijk", filt, filt, filt)
        filt = filt / filt.sum()
        filt = filt[None, None].repeat(out_channels, 1, 1, 1, 1)

        self.register_buffer("filt", filt)
        self.filt: torch.Tensor

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # x: (B, C, T, H, W)
        return F.conv3d(x, self.filt, stride=2, padding=1, groups=self.in_channels)