Spaces:
Running
Running
File size: 11,767 Bytes
19fe404 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import argparse
import copy
import os
import pandas as pd
from accelerate import PartialState
from accelerate.utils import gather_object
from natsort import natsorted
from tqdm import tqdm
from torch.utils.data import DataLoader
from utils.logger import logger
from utils.video_dataset import VideoDataset, collate_fn
from utils.video_utils import get_video_path_list, extract_frames
ACCELERATE_SUPPORTED_MODELS = ["Qwen-VL-Chat", "internlm-xcomposer2-vl-7b"]
SGLANG_SUPPORTED_MODELS = ["llava-v1.6-vicuna-7b"]
def parse_args():
parser = argparse.ArgumentParser(description="Recaption the video frame.")
parser.add_argument("--video_folder", type=str, default="", help="The video folder.")
parser.add_argument(
"--video_metadata_path", type=str, default=None, help="The path to the video dataset metadata (csv/jsonl/txt)."
)
parser.add_argument(
"--video_path_column",
type=str,
default="video_path",
help="The column contains the video path (an absolute path or a relative path w.r.t the video_folder).",
)
parser.add_argument(
"--batch_size",
type=int,
default=10,
required=False,
help="The batch size for the video dataset.",
)
parser.add_argument(
"--frame_sample_method",
type=str,
choices=["mid", "uniform"],
default="mid",
)
parser.add_argument(
"--num_sampled_frames",
type=int,
default=1,
help="num_sampled_frames",
)
parser.add_argument(
"--image_caption_model_name",
type=str,
choices=ACCELERATE_SUPPORTED_MODELS + SGLANG_SUPPORTED_MODELS,
default="internlm-xcomposer2-vl-7b",
)
parser.add_argument(
"--image_caption_model_quantized", type=bool, default=True, help="Whether to use the quantized image caption model."
)
parser.add_argument(
"--image_caption_prompt",
type=str,
default="Describe this image and its style in a very detailed manner.",
)
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="The directory to create the subfolder (named with the video name) to indicate the video has been processed.",
)
parser.add_argument("--saved_path", type=str, required=True, help="The save path to the output results (csv/jsonl).")
parser.add_argument("--saved_freq", type=int, default=1000, help="The frequency to save the output results.")
args = parser.parse_args()
return args
def accelerate_inference(args, video_path_list):
from utils.image_captioner_awq import QwenVLChat, InternLMXComposer2
state = PartialState()
device = state.device
if state.num_processes == 1:
device = "cuda:0"
if args.image_caption_model_name == "internlm-xcomposer2-vl-7b":
image_caption_model = InternLMXComposer2(device=device, quantized=args.image_caption_model_quantized)
elif args.image_caption_model_name == "Qwen-VL-Chat":
image_caption_model = QwenVLChat(device=device, quantized=args.image_caption_model_quantized)
# The workaround can be removed after https://github.com/huggingface/accelerate/pull/2781 is released.
index = len(video_path_list) - len(video_path_list) % state.num_processes
logger.info(f"Drop {len(video_path_list) % state.num_processes} videos to avoid duplicates in state.split_between_processes.")
video_path_list = video_path_list[:index]
if state.is_main_process:
os.makedirs(args.output_dir, exist_ok=True)
result_list = []
with state.split_between_processes(video_path_list) as splitted_video_path_list:
for i, video_path in enumerate(tqdm(splitted_video_path_list, desc=f"{state.device}")):
video_id = os.path.splitext(os.path.basename(video_path))[0]
try:
if not os.path.exists(video_path):
print(f"Video {video_id} does not exist. Pass it.")
continue
sampled_frame_list, sampled_frame_idx_list = extract_frames(video_path, num_sample_frames=args.num_sample_frames)
except Exception as e:
print(f"Failed to extract frames from video {video_id}. Error is {e}.")
video_recaption_output_dir = os.path.join(args.output_dir, video_id)
if os.path.exists(video_recaption_output_dir):
print(f"Video {video_id} has been processed. Pass it.")
continue
else:
os.makedirs(video_recaption_output_dir)
caption_list = []
for frame, frame_idx in zip(sampled_frame_list, sampled_frame_idx_list):
frame_path = f"{args.output_dir}/{video_id}_{frame_idx}.png"
frame.save(frame_path)
try:
response, _ = image_caption_model(args.image_caption_prompt, frame_path)
except Exception as e:
print(f"Failed to caption video {video_id}. Error is {e}.")
finally:
os.remove(frame_path)
caption_list.append(response)
result_meta = {}
if args.video_folder == "":
result_meta[args.video_path_column] = video_path
else:
result_meta[args.video_path_column] = os.path.basename(video_path)
result_meta["image_caption_model"] = args.image_caption_model_name
result_meta["prompt"] = args.image_caption_prompt
result_meta["sampled_frame_idx"] = sampled_frame_idx_list
result_meta["sampled_frame_caption"] = caption_list
result_list.append(copy.deepcopy(result_meta))
# Save the metadata in the main process.
if i != 0 and i % args.saved_freq == 0:
state.wait_for_everyone()
gathered_result_list = gather_object(result_list)
if state.is_main_process:
result_df = pd.DataFrame(gathered_result_list)
if args.saved_path.endswith(".csv"):
result_df.to_csv(args.saved_path, index=False)
elif args.saved_path.endswith(".jsonl"):
result_df.to_json(args.saved_path, orient="records", lines=True)
print(f"Save result to {args.saved_path}.")
# Wait for all processes to finish and gather the final result.
state.wait_for_everyone()
gathered_result_list = gather_object(result_list)
# Save the metadata in the main process.
if state.is_main_process:
result_df = pd.DataFrame(gathered_result_list)
if args.saved_path.endswith(".csv"):
result_df.to_csv(args.saved_path, index=False)
elif args.saved_path.endswith(".jsonl"):
result_df.to_json(args.saved_path, orient="records", lines=True)
print(f"Save the final result to {args.saved_path}.")
def sglang_inference(args, video_path_list):
from utils.image_captioner_sglang import LLaVASRT
if args.image_caption_model_name == "llava-v1.6-vicuna-7b":
image_caption_model = LLaVASRT()
result_dict = {
"video_path": [],
"image_caption_model": [],
"prompt": [],
'sampled_frame_idx': [],
"sampled_frame_caption": []
}
video_dataset = VideoDataset(
video_path_list=video_path_list,
sample_method=args.frame_sample_method,
num_sampled_frames=args.num_sampled_frames
)
video_loader = DataLoader(video_dataset, batch_size=args.batch_size, num_workers=16, collate_fn=collate_fn)
for idx, batch in enumerate(tqdm(video_loader)):
if len(batch) == 0:
continue
batch_video_path, batch_frame_idx = batch["video_path"], batch["sampled_frame_idx"]
# [batch_size, num_sampled_frames, H, W, C] => [batch_size * num_sampled_frames, H, W, C].
batch_frame = []
for item_sampled_frame in batch["sampled_frame"]:
batch_frame.extend([frame for frame in item_sampled_frame])
try:
response_list, _ = image_caption_model([args.image_caption_prompt] * len(batch_frame), batch_frame)
response_list = [response_list[i:i + args.num_sampled_frames] for i in range(0, len(response_list), args.num_sampled_frames)]
except Exception as e:
logger.error(f"Failed to caption video {batch_video_path}. Error is {e}.")
result_dict["video_path"].extend(batch_video_path)
result_dict["image_caption_model"].extend([args.image_caption_model_name] * len(batch_video_path))
result_dict["prompt"].extend([args.image_caption_prompt] * len(batch_video_path))
result_dict["sampled_frame_idx"].extend(batch_frame_idx)
result_dict["sampled_frame_caption"].extend(response_list)
# Save the metadata in the main process.
if idx != 0 and idx % args.saved_freq == 0:
result_df = pd.DataFrame(result_dict)
if args.saved_path.endswith(".csv"):
header = True if not os.path.exists(args.saved_path) else False
result_df.to_csv(args.saved_path, header=header, index=False, mode="a")
elif args.saved_path.endswith(".jsonl"):
result_df.to_json(args.saved_path, orient="records", lines=True, mode="a")
logger.info(f"Save result to {args.saved_path}.")
result_dict = {
"video_path": [],
"image_caption_model": [],
"prompt": [],
'sampled_frame_idx': [],
"sampled_frame_caption": []
}
if len(result_dict["video_path"]) != 0:
result_df = pd.DataFrame(result_dict)
if args.saved_path.endswith(".csv"):
header = True if not os.path.exists(args.saved_path) else False
result_df.to_csv(args.saved_path, header=header, index=False, mode="a")
elif args.saved_path.endswith(".jsonl"):
result_df.to_json(args.saved_path, orient="records", lines=True, mode="a")
logger.info(f"Save the final result to {args.saved_path}.")
def main():
args = parse_args()
video_path_list = get_video_path_list(
video_folder=args.video_folder,
video_metadata_path=args.video_metadata_path,
video_path_column=args.video_path_column
)
if not (args.saved_path.endswith(".csv") or args.saved_path.endswith(".jsonl")):
raise ValueError("The saved_path must end with .csv or .jsonl.")
if os.path.exists(args.saved_path):
if args.saved_path.endswith(".csv"):
saved_metadata_df = pd.read_csv(args.saved_path)
elif args.saved_path.endswith(".jsonl"):
saved_metadata_df = pd.read_json(args.saved_path, lines=True)
saved_video_path_list = saved_metadata_df[args.video_path_column].tolist()
saved_video_path_list = [os.path.join(args.video_folder, path) for path in saved_video_path_list]
video_path_list = list(set(video_path_list) - set(saved_video_path_list))
# Sorting to guarantee the same result for each process.
video_path_list = natsorted(video_path_list)
logger.info(f"Resume from {args.saved_path}: {len(saved_video_path_list)} processed and {len(video_path_list)} to be processed.")
if args.image_caption_model_name in SGLANG_SUPPORTED_MODELS:
sglang_inference(args, video_path_list)
elif args.image_caption_model_name in ACCELERATE_SUPPORTED_MODELS:
accelerate_inference(args, video_path_list)
else:
raise ValueError(f"The {args.image_caption_model_name} is not supported.")
if __name__ == "__main__":
main()
|