Spaces:
Running
Running
#-*- encoding:utf-8 -*- | |
import torch | |
from torch import nn | |
from pytorch_lightning.callbacks import Callback | |
class LitEma(nn.Module): | |
def __init__(self, model, decay=0.9999, use_num_upates=True): | |
super().__init__() | |
if decay < 0.0 or decay > 1.0: | |
raise ValueError('Decay must be between 0 and 1') | |
self.m_name2s_name = {} | |
self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32)) | |
self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates | |
else torch.tensor(-1,dtype=torch.int)) | |
for name, p in model.named_parameters(): | |
if p.requires_grad: | |
#remove as '.'-character is not allowed in buffers | |
s_name = name.replace('.','') | |
self.m_name2s_name.update({name:s_name}) | |
self.register_buffer(s_name,p.clone().detach().data) | |
self.collected_params = [] | |
def forward(self,model): | |
decay = self.decay | |
if self.num_updates >= 0: | |
self.num_updates += 1 | |
decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates)) | |
one_minus_decay = 1.0 - decay | |
with torch.no_grad(): | |
m_param = dict(model.named_parameters()) | |
shadow_params = dict(self.named_buffers()) | |
for key in m_param: | |
if m_param[key].requires_grad: | |
sname = self.m_name2s_name[key] | |
shadow_params[sname] = shadow_params[sname].type_as(m_param[key]) | |
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key])) | |
else: | |
assert not key in self.m_name2s_name | |
def copy_to(self, model): | |
m_param = dict(model.named_parameters()) | |
shadow_params = dict(self.named_buffers()) | |
for key in m_param: | |
if m_param[key].requires_grad: | |
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data) | |
else: | |
assert not key in self.m_name2s_name | |
def store(self, parameters): | |
""" | |
Save the current parameters for restoring later. | |
Args: | |
parameters: Iterable of `torch.nn.Parameter`; the parameters to be | |
temporarily stored. | |
""" | |
self.collected_params = [param.clone() for param in parameters] | |
def restore(self, parameters): | |
""" | |
Restore the parameters stored with the `store` method. | |
Useful to validate the model with EMA parameters without affecting the | |
original optimization process. Store the parameters before the | |
`copy_to` method. After validation (or model saving), use this to | |
restore the former parameters. | |
Args: | |
parameters: Iterable of `torch.nn.Parameter`; the parameters to be | |
updated with the stored parameters. | |
""" | |
for c_param, param in zip(self.collected_params, parameters): | |
param.data.copy_(c_param.data) | |
class EMACallback(Callback): | |
def __init__(self, decay=0.9999): | |
self.decay = decay | |
self.shadow_params = {} | |
def on_train_start(self, trainer, pl_module): | |
# initialize shadow parameters for original models | |
total_ema_cnt = 0 | |
for name, param in pl_module.named_parameters(): | |
if name not in self.shadow_params: | |
self.shadow_params[name] = param.data.clone() | |
else: # already in dict, maybe load from checkpoint | |
pass | |
print('will calc ema for param: %s' % name) | |
total_ema_cnt += 1 | |
print('total_ema_cnt=%d' % total_ema_cnt) | |
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx): | |
# Update the shadow params at the end of each epoch | |
for name, param in pl_module.named_parameters(): | |
assert name in self.shadow_params | |
new_average = (1.0 - self.decay) * param.data + self.decay * self.shadow_params[name] | |
self.shadow_params[name] = new_average.clone() | |
def on_save_checkpoint(self, trainer, pl_module, checkpoint): | |
# Save EMA parameters in the checkpoint | |
checkpoint['ema_params'] = self.shadow_params | |
def on_load_checkpoint(self, trainer, pl_module, checkpoint): | |
# Restore EMA parameters from the checkpoint | |
if 'ema_params' in checkpoint: | |
self.shadow_params = checkpoint.get('ema_params', {}) | |
for k in self.shadow_params: | |
self.shadow_params[k] = self.shadow_params[k].cuda() | |
print('load shadow params from checkpoint, cnt=%d' % len(self.shadow_params)) | |
else: | |
print('ema_params is not in checkpoint') |