Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from .attention import Attention3D, SpatialAttention, TemporalAttention | |
from .common import ResidualBlock3D | |
def get_mid_block( | |
mid_block_type: str, | |
in_channels: int, | |
num_layers: int, | |
act_fn: str, | |
norm_num_groups: int = 32, | |
norm_eps: float = 1e-6, | |
dropout: float = 0.0, | |
add_attention: bool = True, | |
attention_type: str = "3d", | |
num_attention_heads: int = 1, | |
output_scale_factor: float = 1.0, | |
) -> nn.Module: | |
if mid_block_type == "MidBlock3D": | |
return MidBlock3D( | |
in_channels=in_channels, | |
num_layers=num_layers, | |
act_fn=act_fn, | |
norm_num_groups=norm_num_groups, | |
norm_eps=norm_eps, | |
dropout=dropout, | |
add_attention=add_attention, | |
attention_type=attention_type, | |
attention_head_dim=in_channels // num_attention_heads, | |
output_scale_factor=output_scale_factor, | |
) | |
else: | |
raise ValueError(f"Unknown mid block type: {mid_block_type}") | |
class MidBlock3D(nn.Module): | |
""" | |
A 3D UNet mid-block [`MidBlock3D`] with multiple residual blocks and optional attention blocks. | |
Args: | |
in_channels (`int`): The number of input channels. | |
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. | |
act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks. | |
norm_num_groups (`int`, *optional*, defaults to 32): | |
The number of groups to use in the group normalization layers of the resnet blocks. | |
norm_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout rate. | |
add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks. | |
attention_type: (`str`, *optional*, defaults to `3d`): The type of attention to use. Defaults to `3d`. | |
attention_head_dim (`int`, *optional*, defaults to 1): | |
Dimension of a single attention head. The number of attention heads is determined based on this value and | |
the number of input channels. | |
output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor. | |
Returns: | |
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, | |
in_channels, temporal_length, height, width)`. | |
""" | |
def __init__( | |
self, | |
in_channels: int, | |
num_layers: int = 1, | |
act_fn: str = "silu", | |
norm_num_groups: int = 32, | |
norm_eps: float = 1e-6, | |
dropout: float = 0.0, | |
add_attention: bool = True, | |
attention_type: str = "3d", | |
attention_head_dim: int = 1, | |
output_scale_factor: float = 1.0, | |
): | |
super().__init__() | |
self.attention_type = attention_type | |
norm_num_groups = norm_num_groups if norm_num_groups is not None else min(in_channels // 4, 32) | |
self.convs = nn.ModuleList([ | |
ResidualBlock3D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
non_linearity=act_fn, | |
norm_num_groups=norm_num_groups, | |
norm_eps=norm_eps, | |
dropout=dropout, | |
output_scale_factor=output_scale_factor, | |
) | |
]) | |
self.attentions = nn.ModuleList([]) | |
for _ in range(num_layers - 1): | |
if add_attention: | |
if attention_type == "3d": | |
self.attentions.append( | |
Attention3D( | |
in_channels, | |
nheads=in_channels // attention_head_dim, | |
head_dim=attention_head_dim, | |
bias=True, | |
upcast_softmax=True, | |
norm_num_groups=norm_num_groups, | |
eps=norm_eps, | |
rescale_output_factor=output_scale_factor, | |
residual_connection=True, | |
) | |
) | |
elif attention_type == "spatial_temporal": | |
self.attentions.append( | |
nn.ModuleList([ | |
SpatialAttention( | |
in_channels, | |
nheads=in_channels // attention_head_dim, | |
head_dim=attention_head_dim, | |
bias=True, | |
upcast_softmax=True, | |
norm_num_groups=norm_num_groups, | |
eps=norm_eps, | |
rescale_output_factor=output_scale_factor, | |
residual_connection=True, | |
), | |
TemporalAttention( | |
in_channels, | |
nheads=in_channels // attention_head_dim, | |
head_dim=attention_head_dim, | |
bias=True, | |
upcast_softmax=True, | |
norm_num_groups=norm_num_groups, | |
eps=norm_eps, | |
rescale_output_factor=output_scale_factor, | |
residual_connection=True, | |
), | |
]) | |
) | |
elif attention_type == "spatial": | |
self.attentions.append( | |
SpatialAttention( | |
in_channels, | |
nheads=in_channels // attention_head_dim, | |
head_dim=attention_head_dim, | |
bias=True, | |
upcast_softmax=True, | |
norm_num_groups=norm_num_groups, | |
eps=norm_eps, | |
rescale_output_factor=output_scale_factor, | |
residual_connection=True, | |
) | |
) | |
elif attention_type == "temporal": | |
self.attentions.append( | |
TemporalAttention( | |
in_channels, | |
nheads=in_channels // attention_head_dim, | |
head_dim=attention_head_dim, | |
bias=True, | |
upcast_softmax=True, | |
norm_num_groups=norm_num_groups, | |
eps=norm_eps, | |
rescale_output_factor=output_scale_factor, | |
residual_connection=True, | |
) | |
) | |
else: | |
raise ValueError(f"Unknown attention type: {attention_type}") | |
else: | |
self.attentions.append(None) | |
self.convs.append( | |
ResidualBlock3D( | |
in_channels=in_channels, | |
out_channels=in_channels, | |
non_linearity=act_fn, | |
norm_num_groups=norm_num_groups, | |
norm_eps=norm_eps, | |
dropout=dropout, | |
output_scale_factor=output_scale_factor, | |
) | |
) | |
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: | |
hidden_states = self.convs[0](hidden_states) | |
for attn, resnet in zip(self.attentions, self.convs[1:]): | |
if attn is not None: | |
if self.attention_type == "spatial_temporal": | |
spatial_attn, temporal_attn = attn | |
hidden_states = spatial_attn(hidden_states) | |
hidden_states = temporal_attn(hidden_states) | |
else: | |
hidden_states = attn(hidden_states) | |
hidden_states = resnet(hidden_states) | |
return hidden_states | |