model: base_learning_rate: 1.0e-04 target: easyanimate.vae.ldm.models.omnigen_casual3dcnn.AutoencoderKLMagvit_fromOmnigen params: monitor: train/rec_loss ckpt_path: models/videoVAE_omnigen_8x8x4_from_vae-ft-mse-840000-ema-pruned.ckpt down_block_types: ("SpatialDownBlock3D", "SpatialTemporalDownBlock3D", "SpatialTemporalDownBlock3D", "SpatialTemporalDownBlock3D",) up_block_types: ("SpatialUpBlock3D", "SpatialTemporalUpBlock3D", "SpatialTemporalUpBlock3D", "SpatialTemporalUpBlock3D",) lossconfig: target: easyanimate.vae.ldm.modules.losses.LPIPSWithDiscriminator params: disc_start: 50001 kl_weight: 1.0e-06 disc_weight: 0.5 l2_loss_weight: 0.1 l1_loss_weight: 1.0 perceptual_weight: 1.0 data: target: train_vae.DataModuleFromConfig params: batch_size: 2 wrap: true num_workers: 4 train: target: easyanimate.vae.ldm.data.dataset_image_video.CustomSRTrain params: data_json_path: pretrain.json data_root: /your_data_root # This is used in relative path size: 128 degradation: pil_nearest video_size: 128 video_len: 9 slice_interval: 1 validation: target: easyanimate.vae.ldm.data.dataset_image_video.CustomSRValidation params: data_json_path: pretrain.json data_root: /your_data_root # This is used in relative path size: 128 degradation: pil_nearest video_size: 128 video_len: 9 slice_interval: 1 lightning: callbacks: image_logger: target: train_vae.ImageLogger params: batch_frequency: 5000 max_images: 8 increase_log_steps: True trainer: benchmark: True accumulate_grad_batches: 1 gpus: "0" num_nodes: 1