from typing import TYPE_CHECKING import torch import torch.nn.functional as F if TYPE_CHECKING: from .attention import Attention class AttnProcessor: r""" Default processor for performing attention-related computations. """ def __call__( self, attn: "Attention", hidden_states: torch.FloatTensor, encoder_hidden_states, attention_mask, temb = None, ) -> torch.Tensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb = None) # B, L, C assert hidden_states.ndim == 3, f"Hidden states must be 3-dimensional, got {hidden_states.ndim}" batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)) hidden_states = hidden_states.transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states) hidden_states = attn.to_out(hidden_states) hidden_states = attn.dropout(hidden_states) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class AttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def __call__( self, attn: "Attention", hidden_states: torch.FloatTensor, encoder_hidden_states, attention_mask, temb = None, ) -> torch.FloatTensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb = None) # B, L, C assert hidden_states.ndim == 3, f"Hidden states must be 3-dimensional, got {hidden_states.ndim}" batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.nheads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)) hidden_states = hidden_states.transpose(1, 2) query: torch.Tensor = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key: torch.Tensor = attn.to_k(encoder_hidden_states) value: torch.Tensor = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.nheads query = query.view(batch_size, -1, attn.nheads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.nheads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.nheads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False, scale=attn.scale ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.nheads * head_dim) hidden_states = hidden_states.to(query.dtype) hidden_states = attn.to_out(hidden_states) hidden_states = attn.dropout(hidden_states) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states