Spaces:
Running
Running
File size: 5,969 Bytes
e547b24 02adf8c 23cff65 8aae98f e547b24 370a105 5603f55 370a105 ab7a840 e547b24 370a105 e547b24 6f5a32e e547b24 6f5a32e 370a105 ab7a840 e547b24 ab7a840 e547b24 23cff65 e547b24 6f5a32e e547b24 6f5a32e 370a105 e547b24 6f5a32e 370a105 e547b24 02f8cfa bc84ac0 02f8cfa 73f7edc c6c047c e547b24 02f8cfa c6c047c 02adf8c c6c047c 02adf8c 02f8cfa bc84ac0 02f8cfa bc84ac0 02f8cfa 370a105 e547b24 02f8cfa 370a105 9de8f9f 216d48d 370a105 e547b24 370a105 e547b24 e1eefbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
from deep_translator import GoogleTranslator
#os.makedirs('assets', exist_ok=True)
if not os.path.exists('icon.jpg'):
os.system("wget -O icon.jpg https://i.pinimg.com/564x/64/49/88/644988c59447eb00286834c2e70fdd6b.jpg")
API_URL_DEV ="https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
timeout = 100
def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, huggingface_api_key=None):
# Check if the request is an API call by checking for the presence of the huggingface_api_key
is_api_call = huggingface_api_key is not None
if is_api_call:
# Use the environment variable for the API key in GUI mode
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
else:
# Validate the API key if it's an API call
if huggingface_api_key == "":
raise gr.Error("API key is required for API calls.")
headers = {"Authorization": f"Bearer {huggingface_api_key}"}
if prompt == "" or prompt is None:
return None
key = random.randint(0, 999)
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
print(f'\033[1mGeneration {key}:\033[0m {prompt}')
# If seed is -1, generate a random seed and use it
if seed == -1:
seed = random.randint(1, 1000000000)
payload = {
"inputs": prompt,
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed,
"strength": strength
}
response = requests.post(API_URL_DEV, headers=headers, json=payload, timeout=timeout)
if response.status_code != 200:
print(f"Error: Failed to get image. Response status: {response.status_code}")
print(f"Response content: {response.text}")
if response.status_code == 503:
raise gr.Error(f"{response.status_code} : The model is being loaded")
raise gr.Error(f"{response.status_code}")
try:
image_bytes = response.content
image = Image.open(io.BytesIO(image_bytes))
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
# Save the image to a file and return the file path and seed
output_path = f"./output_{key}.png"
image.save(output_path)
return output_path, seed
except Exception as e:
print(f"Error when trying to open the image: {e}")
return None, None
css = """
#app-container {
max-width: 600px;
margin-left: auto;
margin-right: auto;
}
#title-container {
display: flex;
align-items: center;
justify-content: center;
}
#title-icon {
width: 32px; /* Adjust the width of the icon as needed */
height: auto;
margin-right: 10px; /* Space between icon and title */
}
#title-text {
font-size: 24px; /* Adjust font size as needed */
font-weight: bold;
}
"""
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
gr.HTML("""
<center>
<div id="title-container">
<img id="title-icon" src="icon.jpg" alt="Icon">
<h1 id="title-text">FLUX Capacitor</h1>
</div>
</center>
""")
with gr.Column(elem_id="app-container"):
with gr.Row():
with gr.Column(elem_id="prompt-container"):
with gr.Row():
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
huggingface_api_key = gr.Textbox(label="Hugging Face API Key (required for API calls)", placeholder="Enter your Hugging Face API Key here", type="password", elem_id="api-key")
with gr.Row():
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
with gr.Row():
# Define two outputs: one for the image file path and one for the seed
#image_path_output = gr.Textbox(label="Image File Path", elem_id="gallery")
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
seed_output = gr.Textbox(label="Seed Used", elem_id="seed-output")
# Adjust the click function to include the API key as an input
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, huggingface_api_key], outputs=[image_output, seed_output])
app.launch(show_api=True, share=False) |