Spaces:
Running
Running
import gradio as gr | |
import requests | |
import io | |
import random | |
import os | |
from PIL import Image | |
from huggingface_hub import InferenceClient | |
from deep_translator import GoogleTranslator | |
from gradio_client import Client | |
import logging | |
from datetime import datetime | |
import sqlite3 | |
from datetime import datetime | |
# Initialize the database | |
def init_db(file='logs.db'): | |
conn = sqlite3.connect(file) | |
c = conn.cursor() | |
c.execute('''CREATE TABLE IF NOT EXISTS logs | |
(timestamp TEXT, message TEXT)''') | |
conn.commit() | |
conn.close() | |
# Log a request | |
def log_request(prompt, is_negative, steps, cfg_scale, sampler, seed, strength, use_dev, enhance_prompt_style, enhance_prompt_option, nemo_enhance_prompt_style, use_mistral_nemo, huggingface_api_key): | |
log_message = f"Request: prompt='{prompt}', is_negative={is_negative}, steps={steps}, cfg_scale={cfg_scale}, " | |
log_message += f"sampler='{sampler}', seed={seed}, strength={strength}, use_dev={use_dev}, " | |
log_message += f"enhance_prompt_style='{enhance_prompt_style}', enhance_prompt_option={enhance_prompt_option}, " | |
log_message += f"nemo_enhance_prompt_style='{nemo_enhance_prompt_style}', use_mistral_nemo={use_mistral_nemo}" | |
if huggingface_api_key: | |
log_message += f"huggingface_api_key='{huggingface_api_key}'" | |
conn = sqlite3.connect('acces_log.log') | |
c = conn.cursor() | |
c.execute("INSERT INTO logs VALUES (?, ?)", (datetime.now().isoformat(), log_message)) | |
conn.commit() | |
conn.close() | |
# os.makedirs('assets', exist_ok=True) | |
if not os.path.exists('icon.png'): | |
os.system("wget -O icon.png https://huggingface.co/spaces/K00B404/FLUX.1-Dev-Serverless-darn-enhanced-prompt/resolve/main/edge.png") | |
API_URL_DEV = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" | |
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell" | |
timeout = 100 | |
init_db('acces_log.log') | |
# Set up logging | |
logging.basicConfig(filename='access.log', level=logging.INFO, | |
format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S') | |
def log_requestold(prompt, is_negative, steps, cfg_scale, sampler, seed, strength, use_dev, enhance_prompt_style, enhance_prompt_option, nemo_enhance_prompt_style, use_mistral_nemo, huggingface_api_key): | |
log_message = f"Request: prompt='{prompt}', is_negative={is_negative}, steps={steps}, cfg_scale={cfg_scale}, " | |
log_message += f"sampler='{sampler}', seed={seed}, strength={strength}, use_dev={use_dev}, " | |
log_message += f"enhance_prompt_style='{enhance_prompt_style}', enhance_prompt_option={enhance_prompt_option}, " | |
log_message += f"nemo_enhance_prompt_style='{nemo_enhance_prompt_style}', use_mistral_nemo={use_mistral_nemo}" | |
if huggingface_api_key: | |
log_message += f"huggingface_api_key='{huggingface_api_key}'" | |
logging.info(log_message) | |
def check_ubuse(prompt,word_list=["little girl"]): | |
for word in word_list: | |
if word in prompt: | |
print(f"Abuse! prompt {prompt} wiped!") | |
return "None" | |
return prompt | |
def enhance_prompt(prompt, model="mistralai/Mistral-7B-Instruct-v0.1", style="photo-realistic"): | |
client = Client("K00B404/Mistral-Nemo-custom") | |
system_prompt=f""" | |
You are a image generation prompt enhancer specialized in the {style} style. | |
You must respond only with the enhanced version of the users input prompt | |
Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd | |
""" | |
user_message=f"###input image generation prompt### {prompt}" | |
result = client.predict( | |
system_prompt=system_prompt, | |
user_message=user_message, | |
max_tokens=256, | |
model_id=model,# "mistralai/Mistral-Nemo-Instruct-2407", | |
api_name="/predict" | |
) | |
return result | |
# The output value that appears in the "Response" Textbox component. | |
"""result = client.predict( | |
system_prompt=system_prompt,#"You are a image generation prompt enhancer and must respond only with the enhanced version of the users input prompt", | |
user_message=user_message, | |
max_tokens=500, | |
api_name="/predict" | |
) | |
return result | |
""" | |
def enhance_prompt_v2(prompt, model="mistralai/Mistral-Nemo-Instruct-2407", style="photo-realistic"): | |
client = Client("K00B404/Mistral-Nemo-custom") | |
system_prompt=f""" | |
You are a image generation prompt enhancer specialized in the {style} style. | |
You must respond only with the enhanced version of the users input prompt | |
Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd | |
""" | |
user_message=f"###input image generation prompt### {prompt}" | |
result = client.predict( | |
system_prompt=system_prompt, | |
user_message=user_message, | |
max_tokens=256, | |
model_id=model, | |
api_name="/predict" | |
) | |
return result | |
def mistral_nemo_call(prompt, API_TOKEN, model="mistralai/Mistral-Nemo-Instruct-2407", style="photo-realistic"): | |
client = InferenceClient(api_key=API_TOKEN) | |
system_prompt=f""" | |
You are a image generation prompt enhancer specialized in the {style} style. | |
You must respond only with the enhanced version of the users input prompt | |
Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd | |
""" | |
response = "" | |
for message in client.chat_completion( | |
model=model, | |
messages=[{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": prompt} | |
], | |
max_tokens=500, | |
stream=True, | |
): | |
response += message.choices[0].delta.content | |
return response | |
def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, huggingface_api_key=None, use_dev=False,enhance_prompt_style="generic", enhance_prompt_option=False, nemo_enhance_prompt_style="generic", use_mistral_nemo=False): | |
log_request(prompt, is_negative, steps, cfg_scale, sampler, seed, strength, use_dev, enhance_prompt_style, enhance_prompt_option, nemo_enhance_prompt_style, use_mistral_nemo, huggingface_api_key) | |
# Determine which API URL to use | |
api_url = API_URL_DEV if use_dev else API_URL | |
# Check if the request is an API call by checking for the presence of the huggingface_api_key | |
is_api_call = huggingface_api_key is not None | |
if is_api_call: | |
# Use the environment variable for the API key in GUI mode | |
API_TOKEN = os.getenv("HF_READ_TOKEN") | |
else: | |
# Validate the API key if it's an API call | |
if huggingface_api_key == "": | |
raise gr.Error("API key is required for API calls.") | |
API_TOKEN = huggingface_api_key | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
if prompt == "" or prompt is None: | |
return None, None, None | |
key = random.randint(0, 999) | |
prompt = check_ubuse(prompt) | |
#prompt = GoogleTranslator(source='ru', target='en').translate(prompt) | |
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}') | |
original_prompt = prompt | |
if enhance_prompt_option: | |
prompt = enhance_prompt_v2(prompt, style=enhance_prompt_style) | |
print(f'\033[1mGeneration {key} enhanced prompt:\033[0m {prompt}') | |
if use_mistral_nemo: | |
prompt = mistral_nemo_call(prompt, API_TOKEN=API_TOKEN, style=nemo_enhance_prompt_style) | |
print(f'\033[1mGeneration {key} Mistral-Nemo prompt:\033[0m {prompt}') | |
final_prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." | |
print(f'\033[1mGeneration {key}:\033[0m {final_prompt}') | |
# If seed is -1, generate a random seed and use it | |
if seed == -1: | |
seed = random.randint(1, 1000000000) | |
payload = { | |
"inputs": final_prompt, | |
"is_negative": is_negative, | |
"steps": steps, | |
"cfg_scale": cfg_scale, | |
"seed": seed, | |
"strength": strength | |
} | |
response = requests.post(api_url, headers=headers, json=payload, timeout=timeout) | |
if response.status_code != 200: | |
print(f"Error: Failed to get image. Response status: {response.status_code}") | |
print(f"Response content: {response.text}") | |
if response.status_code == 503: | |
raise gr.Error(f"{response.status_code} : The model is being loaded") | |
raise gr.Error(f"{response.status_code}") | |
try: | |
image_bytes = response.content | |
image = Image.open(io.BytesIO(image_bytes)) | |
print(f'\033[1mGeneration {key} completed!\033[0m ({final_prompt})') | |
# Save the image to a file and return the file path and seed | |
output_path = f"./output_{key}.png" | |
image.save(output_path) | |
return output_path, seed, prompt if enhance_prompt_option else original_prompt | |
except Exception as e: | |
print(f"Error when trying to open the image: {e}") | |
return None, None, None | |
title_html=""" | |
<center> | |
<div id="title-container"> | |
<h1 id="title-text">FLUX Capacitor</h1> | |
</div> | |
</center> | |
""" | |
css = """ | |
.gradio-container { | |
background: url(https://huggingface.co/spaces/K00B404/FLUX.1-Dev-Serverless-darn-enhanced-prompt/resolve/main/edge.png); | |
background-size: 900px 880px; | |
background-repeat: no-repeat; | |
background-position: center; | |
background-attachment: fixed; | |
color:#000; | |
} | |
.dark\:bg-gray-950:is(.dark *) { | |
--tw-bg-opacity: 1; | |
background-color: rgb(157, 17, 142); | |
} | |
.gradio-container-4-41-0 .prose :last-child { | |
margin-top: 8px !important; | |
} | |
.gradio-container-4-41-0 .prose :last-child { | |
margin-bottom: -7px !important; | |
} | |
.dark { | |
--button-primary-background-fill: #09e60d70; | |
--button-primary-background-fill-hover: #00000070; | |
--background-fill-primary: #000; | |
--background-fill-secondary: #000; | |
} | |
.hide-container { | |
margin-top;-2px; | |
} | |
#app-container3 { | |
background-color: rgba(255, 255, 255, 0.001); /* Corrected to make semi-transparent */ | |
max-width: 600px; | |
margin-left: auto; | |
margin-right: auto; | |
margin-bottom: 10px; | |
border-radius: 125px; | |
box-shadow: 0 0 10px rgba(0,0,0,0.1); /* Adjusted shadow opacity */ | |
} | |
#app-container { | |
background-color: rgba(255, 255, 255, 0.001); /* Semi-transparent background */ | |
max-width: 600px; | |
margin: 0 auto; /* Center horizontally */ | |
padding-bottom: 10px; | |
border-radius: 25px; | |
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); /* Adjusted shadow opacity */ | |
} | |
.panel-container { | |
background-image: url('your-neon-border-image.png'); | |
background-size: 100% 100%; /* Adjust the size to cover the container */ | |
background-repeat: no-repeat; | |
background-position: center; | |
} | |
#title-container { | |
display: flex; | |
align-items: center | |
margin-bottom:10px; | |
justify-content: center; | |
} | |
#title-icon { | |
width: 32px; | |
height: auto; | |
margin-right: 10px; | |
} | |
#title-text { | |
font-size: 30px; | |
font-weight: bold; | |
color: #000; | |
} | |
:root { | |
--panel-size: 300px; | |
--border-width: 4px; | |
--glow-blur: 15px; | |
} | |
body { | |
background-color: #000; | |
display: flex; | |
justify-content: center; | |
align-items: center; | |
min-height: 100vh; | |
margin: 0; | |
} | |
.neon-panel { | |
width: var(--panel-size); | |
height: var(--panel-size); | |
background-color: #000; | |
position: relative; | |
border-radius: 20px; | |
overflow: hidden; | |
} | |
.neon-panel::before, | |
.neon-panel::after { | |
content: ''; | |
position: absolute; | |
left: -2px; | |
top: -2px; | |
background: linear-gradient( | |
124deg, | |
#ff2400, #e81d1d, #e8b71d, #e3e81d, #1de840, | |
#1ddde8, #2b1de8, #dd00f3, #dd00f3 | |
); | |
background-size: 300% 300%; | |
width: calc(100% + 4px); | |
height: calc(100% + 4px); | |
z-index: -1; | |
animation: moveGradient 10s ease infinite; | |
} | |
.neon-panel::after { | |
filter: blur(var(--glow-blur)); | |
} | |
.neon-panel-content { | |
position: absolute; | |
top: var(--border-width); | |
left: var(--border-width); | |
right: var(--border-width); | |
bottom: var(--border-width); | |
background-color: #000; | |
border-radius: 16px; | |
z-index: 1; | |
} | |
@keyframes moveGradient { | |
0% { background-position: 0% 50%; } | |
50% { background-position: 100% 50%; } | |
100% { background-position: 0% 50%; } | |
} | |
@media (max-width: 768px) { | |
:root { | |
--panel-size: 250px; | |
--glow-blur: 10px; | |
} | |
} | |
@media (prefers-reduced-motion: reduce) { | |
.neon-panel::before, | |
.neon-panel::after { | |
animation: none; | |
} | |
} | |
""" | |
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app: | |
gr.HTML(title_html) # title html | |
with gr.Column(elem_id="app-container"): | |
with gr.Row(): | |
with gr.Column(elem_id="prompt-container"): | |
with gr.Row(): | |
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input") | |
with gr.Row(): | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input") | |
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1) | |
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1) | |
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"]) | |
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001) | |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) | |
huggingface_api_key = gr.Textbox(label="Hugging Face API Key (required for API calls)", placeholder="Enter your Hugging Face API Key here", type="password", elem_id="api-key") | |
use_dev = gr.Checkbox(label="Use Dev API", value=False, elem_id="use-dev-checkbox") | |
enhance_prompt_style = gr.Textbox(label="Enhance Prompt Style", placeholder="Enter style for the prompt enhancer here", elem_id="enhance-prompt-style") | |
enhance_prompt_option = gr.Checkbox(label="Enhance Prompt", value=False, elem_id="enhance-prompt-checkbox") | |
use_mistral_nemo = gr.Checkbox(label="Use Mistral Nemo", value=False, elem_id="use-mistral-checkbox") | |
nemo_prompt_style = gr.Textbox(label="Nemo Enhance Prompt Style", placeholder="Enter style for the prompt enhancer here", elem_id="nemo-enhance-prompt-style") | |
with gr.Row(): | |
text_button = gr.Button("Run", variant='primary', elem_id="gen-button") | |
with gr.Row(): | |
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery") | |
with gr.Row(): | |
seed_output = gr.Textbox(label="Seed Used", elem_id="seed-output") | |
final_prompt_output = gr.Textbox(label="Final Prompt", elem_id="final-prompt-output") | |
# Adjust the click function to include the API key, use_dev, and enhance_prompt_option as inputs | |
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, huggingface_api_key, use_dev, enhance_prompt_style,enhance_prompt_option, enhance_prompt_style, use_mistral_nemo], outputs=[image_output, seed_output, final_prompt_output]) | |
app.launch(show_api=True, share=False) |