File size: 14,865 Bytes
0777cbf
d48de17
0777cbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9894f18
d48de17
0777cbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67193d7
 
0777cbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

import gradio as gr
import requests
import io
import random
import os
from PIL import Image
from huggingface_hub import InferenceClient
from gradio_client import Client
import logging
from datetime import datetime

import sqlite3
from datetime import datetime


# Initialize the database
def init_db(file='logs.db'):
    conn = sqlite3.connect(file)
    c = conn.cursor()
    c.execute('''CREATE TABLE IF NOT EXISTS logs
                 (timestamp TEXT, message TEXT)''')
    conn.commit()
    conn.close()

# Log a request
def log_request(prompt, is_negative, steps, cfg_scale, sampler, seed, strength, use_dev, enhance_prompt_style, enhance_prompt_option, nemo_enhance_prompt_style, use_mistral_nemo, huggingface_api_key):
    log_message = f"Request: prompt='{prompt}', is_negative={is_negative}, steps={steps}, cfg_scale={cfg_scale}, "
    log_message += f"sampler='{sampler}', seed={seed}, strength={strength}, use_dev={use_dev}, "
    log_message += f"enhance_prompt_style='{enhance_prompt_style}', enhance_prompt_option={enhance_prompt_option}, "
    log_message += f"nemo_enhance_prompt_style='{nemo_enhance_prompt_style}', use_mistral_nemo={use_mistral_nemo}"
    if huggingface_api_key:
        log_message += f"huggingface_api_key='{huggingface_api_key}'"
    
    conn = sqlite3.connect('acces_log.log')
    c = conn.cursor()
    c.execute("INSERT INTO logs VALUES (?, ?)", (datetime.now().isoformat(), log_message))
    conn.commit()
    conn.close()
    
# os.makedirs('assets', exist_ok=True)
if not os.path.exists('icon.png'):
    os.system("wget -O icon.png https://huggingface.co/spaces/K00B404/FLUX.1-Dev-Serverless-darn-enhanced-prompt/resolve/main/edge.png")
API_URL_DEV = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"
timeout = 100
init_db('acces_log.log')
client = Client("https://https://huggingface.co/spaces/K00B404/SnelleJelle")
# Set up logging
logging.basicConfig(filename='access.log', level=logging.INFO,
                    format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S')



def log_requestold(prompt, is_negative, steps, cfg_scale, sampler, seed, strength, use_dev, enhance_prompt_style, enhance_prompt_option, nemo_enhance_prompt_style, use_mistral_nemo, huggingface_api_key):
    log_message = f"Request: prompt='{prompt}', is_negative={is_negative}, steps={steps}, cfg_scale={cfg_scale}, "
    log_message += f"sampler='{sampler}', seed={seed}, strength={strength}, use_dev={use_dev}, "
    log_message += f"enhance_prompt_style='{enhance_prompt_style}', enhance_prompt_option={enhance_prompt_option}, "
    log_message += f"nemo_enhance_prompt_style='{nemo_enhance_prompt_style}', use_mistral_nemo={use_mistral_nemo}"
    if huggingface_api_key:
        log_message += f"huggingface_api_key='{huggingface_api_key}'"
    logging.info(log_message)


def check_ubuse(prompt,word_list=["little girl"]):
    for word in word_list:
        if word in prompt:
            print(f"Abuse! prompt {prompt} wiped!")
            return "None"
    return prompt


def enhance_prompt(prompt, style="photo-realistic"):
    system_message = f"""
    You are an image generation prompt enhancer specialized in the {style} style. 
    You must respond only with the enhanced version of the user's input prompt.
    Remember, image generation models can be stimulated by referring to camera 'effects' in the prompt like: 4k, award-winning, super details, 35mm lens, hd
    """
    
    result = client.predict(
        message=prompt,
        system_message=system_message,
        max_tokens=512,
        temperature=0.7,
        top_p=0.95,
        api_name="/chat"
    )
    return result



def enhance_prompt(prompt, model="mistralai/Mistral-Nemo-Instruct-2407", style="photo-realistic"):
    system_prompt=f"""
    You are a image generation prompt enhancer specialized in the {style} style. 
    You must respond only with the enhanced version of the users input prompt
    Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd
    """

    result = client.predict(
    		system_prompt=system_prompt,
    		user_message=user_message,
    		max_tokens=256,
    		model_id=model,# "mistralai/Mistral-Nemo-Instruct-2407",
    		api_name="/chat"
    )
    return result
    
    # The output value that appears in the "Response" Textbox component.
    """result = client.predict(
        system_prompt=system_prompt,#"You are a image generation prompt enhancer and must respond only with the enhanced version of the users input prompt",
        user_message=user_message,
        max_tokens=500,
        api_name="/predict"
    )
    return result
    """


def enhance_prompt_v2(prompt, model="mistralai/Mistral-Nemo-Instruct-2407", style="photo-realistic"):
    
    client = Client("K00B404/Mistral-Nemo-custom")
    
    system_prompt=f"""
    You are a image generation prompt enhancer specialized in the {style} style. 
    You must respond only with the enhanced version of the users input prompt
    Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd
    """
    user_message=f"###input image generation prompt### {prompt}"
   
    result = client.predict(
    		system_prompt=system_prompt,
    		user_message=user_message,
    		max_tokens=256,
    		model_id=model,
    		api_name="/predict"
    )
    return result

    
def mistral_nemo_call(prompt, API_TOKEN, model="mistralai/Mistral-Nemo-Instruct-2407", style="photo-realistic"):
    
    client = InferenceClient(api_key=API_TOKEN)
    system_prompt=f"""
    You are a image generation prompt enhancer specialized in the {style} style. 
    You must respond only with the enhanced version of the users input prompt
    Remember, image generation models can be stimulated by refering to camera 'effect' in the prompt like :4k ,award winning, super details, 35mm lens, hd
    """
    
    response = ""
    for message in client.chat_completion(
        model=model,
        messages=[{"role": "system", "content": system_prompt},
                  {"role": "user", "content": prompt}
                 ],
        max_tokens=500,
        stream=True,
    ):
        response += message.choices[0].delta.content
    return response
    
def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, huggingface_api_key=None, use_dev=False,enhance_prompt_style="generic", enhance_prompt_option=False, nemo_enhance_prompt_style="generic", use_mistral_nemo=False):
    
    log_request(prompt, is_negative, steps, cfg_scale, sampler, seed, strength, use_dev, enhance_prompt_style, enhance_prompt_option, nemo_enhance_prompt_style, use_mistral_nemo, huggingface_api_key)
    # Determine which API URL to use
    api_url = API_URL_DEV if use_dev else API_URL

    # Check if the request is an API call by checking for the presence of the huggingface_api_key
    is_api_call = huggingface_api_key is not None

    if is_api_call:
        # Use the environment variable for the API key in GUI mode
        API_TOKEN = os.getenv("HF_READ_TOKEN")
    else:
        # Validate the API key if it's an API call
        if huggingface_api_key == "":
            raise gr.Error("API key is required for API calls.")
        API_TOKEN = huggingface_api_key
    
    headers = {"Authorization": f"Bearer {API_TOKEN}"} 

    if prompt == "" or prompt is None:
        return None, None, None

    key = random.randint(0, 999)
    prompt = check_ubuse(prompt)
    #prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
    print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')

    original_prompt = prompt
    if enhance_prompt_option:
        prompt = enhance_prompt_v2(prompt, style=enhance_prompt_style)
        print(f'\033[1mGeneration {key} enhanced prompt:\033[0m {prompt}')
    if use_mistral_nemo:
        prompt = mistral_nemo_call(prompt, API_TOKEN=API_TOKEN, style=nemo_enhance_prompt_style)
        print(f'\033[1mGeneration {key} Mistral-Nemo prompt:\033[0m {prompt}')
        
    final_prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'\033[1mGeneration {key}:\033[0m {final_prompt}')

    # If seed is -1, generate a random seed and use it
    if seed == -1:
        seed = random.randint(1, 1000000000)

    payload = {
        "inputs": final_prompt,
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed,
        "strength": strength
    }

    response = requests.post(api_url, headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Error: Failed to get image. Response status: {response.status_code}")
        print(f"Response content: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
        raise gr.Error(f"{response.status_code}")
    
    try:
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mGeneration {key} completed!\033[0m ({final_prompt})')

        # Save the image to a file and return the file path and seed
        output_path = f"./output_{key}.png"
        image.save(output_path)
        
        return output_path, seed, prompt if enhance_prompt_option else original_prompt
    except Exception as e:
        print(f"Error when trying to open the image: {e}")
        return None, None, None


  
title_html="""
    <center>
        <div id="title-container">
            <h1 id="title-text">FLUX Capacitor</h1>
        </div>
    </center>
"""

css = """
.gradio-container {
    background: url(https://huggingface.co/spaces/K00B404/FLUX.1-Dev-Serverless-darn-enhanced-prompt/resolve/main/edge.png);
    background-size: 900px 880px;
    background-repeat: no-repeat;
    background-position: center;
    background-attachment: fixed;
    color:#000;
}
.dark\:bg-gray-950:is(.dark *) {
  --tw-bg-opacity: 1;
  background-color: rgb(157, 17, 142);
}
.gradio-container-4-41-0 .prose :last-child {
  margin-top: 8px !important;
}
.gradio-container-4-41-0 .prose :last-child {
  margin-bottom: -7px !important;
}
.dark {
    --button-primary-background-fill: #09e60d70;
    --button-primary-background-fill-hover: #00000070;
    --background-fill-primary: #000;
    --background-fill-secondary: #000;
}
.hide-container {
    margin-top;-2px;
}
#app-container3 {
    background-color: rgba(255, 255, 255, 0.001);  /* Corrected to make semi-transparent */
    max-width: 600px;
    margin-left: auto;
    margin-right: auto;
    margin-bottom: 10px;
    border-radius: 125px;
    box-shadow: 0 0 10px rgba(0,0,0,0.1); /* Adjusted shadow opacity */
}
#app-container {
    background-color: rgba(255, 255, 255, 0.001);  /* Semi-transparent background */
    max-width: 600px;
    margin: 0 auto;  /* Center horizontally */
    padding-bottom: 10px;
    border-radius: 25px;
    box-shadow: 0 0 10px rgba(0, 0, 0, 0.1); /* Adjusted shadow opacity */
}
#title-container {
    display: flex;
    align-items: center
    margin-bottom:10px;
    justify-content: center;
}
#title-icon {
    width: 32px;
    height: auto;
    margin-right: 10px;
}
#title-text {
    font-size: 30px;
    font-weight: bold;
    color: #000;
}
"""


with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:


    
    gr.HTML(title_html) # title html 
    
    with gr.Column(elem_id="app-container"):
        with gr.Row():
            with gr.Column(elem_id="prompt-container"):
                with gr.Row():
                    text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
                with gr.Row():
                    with gr.Accordion("Advanced Settings", open=False):
                        negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
                        steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
                        cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
                        method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
                        strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
                        seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
                        huggingface_api_key = gr.Textbox(label="Hugging Face API Key (required for API calls)", placeholder="Enter your Hugging Face API Key here", type="password", elem_id="api-key")
                        use_dev = gr.Checkbox(label="Use Dev API", value=False, elem_id="use-dev-checkbox")
                        enhance_prompt_style =  gr.Textbox(label="Enhance Prompt Style", placeholder="Enter style for the prompt enhancer here", elem_id="enhance-prompt-style")
                        enhance_prompt_option = gr.Checkbox(label="Enhance Prompt", value=False, elem_id="enhance-prompt-checkbox")
                        use_mistral_nemo = gr.Checkbox(label="Use Mistral Nemo", value=False, elem_id="use-mistral-checkbox")
                        nemo_prompt_style =  gr.Textbox(label="Nemo Enhance Prompt Style", placeholder="Enter style for the prompt enhancer here", elem_id="nemo-enhance-prompt-style")
                        
        with gr.Row():
            text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
        with gr.Row():
            image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
        with gr.Row():
            seed_output = gr.Textbox(label="Seed Used", elem_id="seed-output")
            final_prompt_output = gr.Textbox(label="Final Prompt", elem_id="final-prompt-output")
        
        # Adjust the click function to include the API key, use_dev, and enhance_prompt_option as inputs
        text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, huggingface_api_key, use_dev, enhance_prompt_style,enhance_prompt_option, enhance_prompt_style, use_mistral_nemo], outputs=[image_output, seed_output, final_prompt_output])

app.launch(show_api=True, share=False)