Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -11,94 +11,9 @@ import json
|
|
11 |
# Project by Nymbo
|
12 |
from diffusers import DiffusionPipeline
|
13 |
|
14 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid-xt")
|
15 |
|
16 |
-
|
17 |
-
image = pipe(prompt).images[0]
|
18 |
|
19 |
-
|
20 |
-
API_TOKEN = os.getenv("HF_READ_TOKEN")
|
21 |
-
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
22 |
-
timeout = 100
|
23 |
|
24 |
-
|
25 |
-
def query(prompt, is_negative=False, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024):
|
26 |
-
if prompt == "" or prompt is None:
|
27 |
-
return None
|
28 |
-
|
29 |
-
key = random.randint(0, 999)
|
30 |
-
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
31 |
-
# Translate the prompt from Russian to English if necessary
|
32 |
-
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
|
33 |
-
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
|
34 |
-
# Add some extra flair to the prompt
|
35 |
-
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
|
36 |
-
print(f'\033[1mGeneration {key}:\033[0m {prompt}')
|
37 |
-
# Prepare the payload for the API call, including width and height
|
38 |
-
payload = {
|
39 |
-
"inputs": prompt,
|
40 |
-
"is_negative": is_negative,
|
41 |
-
"steps": steps,
|
42 |
-
"cfg_scale": cfg_scale,
|
43 |
-
"seed": seed if seed != -1 else random.randint(1, 1000000000),
|
44 |
-
"strength": strength,
|
45 |
-
"parameters": {
|
46 |
-
"width": width, # Pass the width to the API
|
47 |
-
"height": height # Pass the height to the API
|
48 |
-
}
|
49 |
-
}
|
50 |
-
|
51 |
-
# Send the request to the API and handle the response
|
52 |
-
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
|
53 |
-
if response.status_code != 200:
|
54 |
-
print(f"Error: Failed to get image. Response status: {response.status_code}")
|
55 |
-
print(f"Response content: {response.text}")
|
56 |
-
if response.status_code == 503:
|
57 |
-
raise gr.Error(f"{response.status_code} : The model is being loaded")
|
58 |
-
raise gr.Error(f"{response.status_code}")
|
59 |
-
try:
|
60 |
-
# Convert the response content into an image
|
61 |
-
image_bytes = response.content
|
62 |
-
image = Image.open(io.BytesIO(image_bytes))
|
63 |
-
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
|
64 |
-
return image
|
65 |
-
except Exception as e:
|
66 |
-
print(f"Error when trying to open the image: {e}")
|
67 |
-
return None
|
68 |
-
|
69 |
-
# ... (CSS and other code remains the same)
|
70 |
-
title="<title>FluxiFloXStrot</title>"
|
71 |
-
# Build the Gradio UI with Blocks
|
72 |
-
with gr.Blocks() as app:
|
73 |
-
gr.HTML(title)
|
74 |
-
|
75 |
-
with gr.Row():
|
76 |
-
gr.HTML('<div id="neon-cursor" class="neon-cursor"></div>')
|
77 |
-
|
78 |
-
with gr.Column(elem_id="app-container"):
|
79 |
-
with gr.Row():
|
80 |
-
with gr.Column(elem_id="prompt-container"):
|
81 |
-
with gr.Row():
|
82 |
-
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
|
83 |
-
|
84 |
-
with gr.Row():
|
85 |
-
with gr.Accordion("Advanced Settings", open=False):
|
86 |
-
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
|
87 |
-
with gr.Row():
|
88 |
-
width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=32)
|
89 |
-
height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=32)
|
90 |
-
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
|
91 |
-
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
|
92 |
-
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
|
93 |
-
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
|
94 |
-
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
|
95 |
-
|
96 |
-
with gr.Row():
|
97 |
-
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
|
98 |
-
|
99 |
-
with gr.Row():
|
100 |
-
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
|
101 |
-
|
102 |
-
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output)
|
103 |
-
|
104 |
-
app.launch(show_api=True, share=False)
|
|
|
11 |
# Project by Nymbo
|
12 |
from diffusers import DiffusionPipeline
|
13 |
|
|
|
14 |
|
15 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-video-diffusion-img2vid")
|
|
|
16 |
|
17 |
+
image = Image.open("19616f3c-1419-43a1-baa7-c3c6ee8b0980.png") #
|
|
|
|
|
|
|
18 |
|
19 |
+
image = pipe(image=image).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|