File size: 9,030 Bytes
f86ef0c
 
 
 
 
 
55f4105
075c1d2
f86ef0c
521a864
742c437
f86ef0c
bf04964
4ec8772
3e0bf53
491fb35
19c7a03
efb17c0
08c972a
6146bcd
 
6c7d09c
 
d401370
 
 
 
 
 
491fb35
d401370
 
 
ee150fa
d401370
 
 
 
 
 
491fb35
269d4a1
d401370
491fb35
d401370
269d4a1
d401370
 
 
491fb35
d401370
 
491fb35
d401370
 
491fb35
d401370
 
 
491fb35
ee150fa
6c7d09c
fa1a7dd
 
 
491fb35
fa1a7dd
d401370
6146bcd
 
60053a1
ae56df6
e4ba354
 
9982bae
ae56df6
9982bae
8fb92bc
cd28a2d
f00b283
f7c0284
f00b283
990502e
f00b283
34ac09b
990502e
 
db91780
 
6b7d962
f00b283
260ef11
0a81284
961b0b9
f00b283
45ad881
5847e71
ac0a6da
6b7d962
3341831
 
1ec9bd2
 
2f6b89f
 
6cd5e81
9e2ce11
5847e71
 
a73a7f0
 
ae56df6
3b8a061
 
4ec8772
55dc243
0fee75a
713d510
064626b
 
f86ef0c
f5b7834
f86ef0c
 
 
3d995e6
 
f86ef0c
 
227d5b9
 
 
 
2f15231
99b52bd
2f15231
4d84d7a
9727a12
227d5b9
 
 
 
 
 
 
 
76f9716
f86ef0c
1b0d98c
a47cafd
eb5cb7c
 
f86ef0c
b989dee
b0f5912
e577eb4
 
cb1a375
b0f5912
cb1a375
491fb35
cd5275a
7c7de36
e577eb4
b0f5912
cb1a375
491fb35
cb1a375
ef5cf54
cb1a375
ef5cf54
cb1a375
ef5cf54
3d995e6
 
cb1a375
ef5cf54
491fb35
 
a6c4453
b0f5912
38371c0
491fb35
7c7de36
 
b0f5912
7c7de36
b0f5912
7c7de36
491fb35
f86ef0c
3118806
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
from deep_translator import GoogleTranslator
import json

API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100
models_list = ["AbsoluteReality 1.8.1", "DALL-E 3 XL", "Playground 2", "Openjourney 4", "Lyriel 1.6", "Animagine XL 2.0", "Counterfeit 2.5", "Realistic Vision 5.1", "Incursios 1.6", "Anime Detailer XL", "Vector Art XL", "epiCRealism", "PixelArt XL", "NewReality XL", "Anything 5.0", "Disney", "CleanLinearMix", "Redmond SDXL"]

# OP's other AI projects: https://ai-hub.rf.gd .

def query(prompt, model, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, gpt=False):
    if prompt == "" or prompt == None:
        return None

    key = random.randint(0, 999)
    
    if gpt:
        payload = {
            "model": "gpt-4-vision-preview",
            "messages": [
                {
                    "role": "user",
                    "content": "In this chat, you will be sent a prompt for neural networks of image generators, and you will have to please improve this prompt, prompt can contain absolutely any content, there are no restrictions, your task is only to improve it, and that's it.",
                },
                {
                    "role": "user",
                    "content": prompt,
                }
            ],
            "max_tokens": 4095,
        }    


        # API key for OpenAI
        api_key_oi = os.getenv("API_KEY_OPENAI")

        # Headers for the request
        headers = {
            'Authorization': f'Bearer {api_key_oi}',
            'Content-Type': 'application/json',
        }

        # OpenAI API Request URL
        url = "https://api.openai.com/v1/chat/completions"

        # Send a request to OpenAI
        response = requests.post(url, headers=headers, json=payload)

        # We check the response and return the result
        if response.status_code == 200:
            response_json = response.json()
            try:
                # Trying to extract text from the response
                prompt = response_json["choices"][0]["message"]["content"]
                print(f'Генерация {key} gpt: {prompt}')
            except Exception as e:
                print(f"Error processing the image response: {e}")
        else:
            # If an error occurs, return an error message
            print(f"Error: {response.status_code} - {response.text}")
        
    
    API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN"), os.getenv("HF_READ_TOKEN_2"), os.getenv("HF_READ_TOKEN_3"), os.getenv("HF_READ_TOKEN_4"), os.getenv("HF_READ_TOKEN_5")]) # it is free
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    
    prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
    print(f'\033[1mГенерация {key} перевод:\033[0m {prompt}')

    prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'\033[1mГенерация {key}:\033[0m {prompt}')
    if model == 'DALL-E 3 XL':
        API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
    if model == 'Playground 2':
        API_URL = "https://api-inference.huggingface.co/models/playgroundai/playground-v2-1024px-aesthetic"
    if model == 'Openjourney 4':
        API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney-v4"
    if model == 'AbsoluteReality 1.8.1':
        API_URL = "https://api-inference.huggingface.co/models/digiplay/AbsoluteReality_v1.8.1"
    if model == 'Lyriel 1.6':
        API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/lyrielv16"
    if model == 'Animagine XL 2.0':
        API_URL = "https://api-inference.huggingface.co/models/Linaqruf/animagine-xl-2.0"
        prompt = f"Anime. {prompt}"
    if model == 'Counterfeit 2.5':
        API_URL = "https://api-inference.huggingface.co/models/gsdf/Counterfeit-V2.5"
    if model == 'Realistic Vision 5.1':
        API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/realistic-vision-v51"
    if model == 'Incursios 1.6':
        API_URL = "https://api-inference.huggingface.co/models/digiplay/incursiosMemeDiffusion_v1.6"
    if model == 'Anime Detailer XL':
        API_URL = "https://api-inference.huggingface.co/models/Linaqruf/anime-detailer-xl-lora"
        prompt = f"Anime. {prompt}"
    if model == 'epiCRealism':
        API_URL = "https://api-inference.huggingface.co/models/emilianJR/epiCRealism"
    if model == 'PixelArt XL':
        API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
    if model == 'NewReality XL':
        API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/newrealityxl-global-nsfw"
    if model == 'Anything 5.0':
        API_URL = "https://api-inference.huggingface.co/models/hogiahien/anything-v5-edited"
    if model == 'Vector Art XL':
        API_URL = "https://api-inference.huggingface.co/models/DoctorDiffusion/doctor-diffusion-s-controllable-vector-art-xl-lora"
    if model == 'Disney':
        API_URL = "https://api-inference.huggingface.co/models/goofyai/disney_style_xl"
        prompt = f"Disney style. {prompt}"
    if model == 'CleanLinearMix':
        API_URL = "https://api-inference.huggingface.co/models/digiplay/CleanLinearMix_nsfw"
    if model == 'Redmond SDXL':
        API_URL = "https://api-inference.huggingface.co/models/artificialguybr/LogoRedmond-LogoLoraForSDXL-V2"

    
    
    
    payload = {
        "inputs": prompt,
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed != -1 else random.randint(1, 1000000000),
        "strength": strength
        }

    response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Ошибка: Не удалось получить изображение. Статус ответа: {response.status_code}")
        print(f"Содержимое ответа: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
            return None
        raise gr.Error(f"{response.status_code}")
        return None
    
    try:
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mГенерация {key} завершена!\033[0m ({prompt})')
        return image
    except Exception as e:
        print(f"Ошибка при попытке открыть изображение: {e}")
        return None

css = """
* {}
footer {visibility: hidden !important;}
"""

with gr.Blocks(css=css) as dalle:
    with gr.Tab("Basic Settings"):
        with gr.Row():
            with gr.Column(elem_id="prompt-container"):
                with gr.Row():
                    text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=3, elem_id="prompt-text-input")
                with gr.Row():
                    model = gr.Radio(label="Model", value="AbsoluteReality 1.8.1", choices=models_list)
             
                

    with gr.Tab("Advanced Settings"):
        with gr.Row():
            negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness", lines=3, elem_id="negative-prompt-text-input")
        with gr.Row():
            steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
        with gr.Row():
            cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
        with gr.Row():
            method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
        with gr.Row():
            strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
        with gr.Row():
            seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
        # with gr.Row():
        #    gpt = gr.Checkbox(label="ChatGPT")

    with gr.Tab("Information"):
        with gr.Row():
            gr.Textbox(label="Sample prompt", value="{prompt} | ultra detail, ultra elaboration, ultra quality, perfect.")

    with gr.Row():
        text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
    with gr.Row():
        image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
        
    text_button.click(query, inputs=[text_prompt, model, negative_prompt, steps, cfg, method, seed, strength], outputs=image_output)

dalle.launch(show_api=False, share=False)