File size: 9,676 Bytes
f86ef0c
 
 
 
 
 
55f4105
075c1d2
f86ef0c
521a864
742c437
f86ef0c
bf04964
0fee75a
3e0bf53
19c7a03
 
efb17c0
08c972a
6146bcd
 
6c7d09c
 
d401370
 
 
 
 
 
5eaec1e
d401370
 
 
ee150fa
d401370
 
 
 
 
 
 
269d4a1
d401370
 
 
269d4a1
d401370
 
 
 
 
 
 
 
 
 
 
 
 
 
ee150fa
6c7d09c
fa1a7dd
 
 
 
 
d401370
6146bcd
 
60053a1
ae56df6
e4ba354
 
9982bae
ae56df6
9982bae
8fb92bc
cd28a2d
f00b283
f7c0284
f00b283
990502e
f00b283
34ac09b
990502e
 
db91780
 
6b7d962
f00b283
260ef11
0a81284
961b0b9
f00b283
45ad881
5847e71
ac0a6da
6b7d962
3341831
 
1ec9bd2
 
2f6b89f
 
6cd5e81
9e2ce11
5847e71
 
a73a7f0
 
ae56df6
3b8a061
 
c710472
 
0fee75a
713d510
064626b
 
f86ef0c
f5b7834
f86ef0c
 
 
3d995e6
 
f86ef0c
 
227d5b9
 
 
 
7f3244e
227d5b9
 
 
 
 
 
 
 
76f9716
f86ef0c
1b0d98c
a47cafd
eb5cb7c
 
f86ef0c
6b98730
3eb21bd
e577eb4
 
cb1a375
 
 
97fdc06
cd5275a
7c7de36
e577eb4
 
cb1a375
ef5cf54
cb1a375
ef5cf54
cb1a375
ef5cf54
cb1a375
ef5cf54
3d995e6
 
cb1a375
ef5cf54
d401370
 
a6c4453
3e6f556
38371c0
ae56df6
7c7de36
 
 
 
f7cd0b6
7c7de36
d401370
f86ef0c
3118806
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
from deep_translator import GoogleTranslator
import json

API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100
models_list = ["AbsoluteReality 1.8.1", "DALL-E 3 XL", "Playground 2", "Openjourney 4", "Lyriel 1.6", "Animagine XL 2.0", "Counterfeit 2.5", "Realistic Vision 5.1", "Incursios 1.6", "Anime Detailer XL", "Vector Art XL", "epiCRealism", "PixelArt XL", "NewReality XL", "Anything 5.0", "Disney", "CleanLinearMix", "OrangeMixs"]

# PLEASE ❤ like ❤ this space. Please like me. I am 12 years old, one of my projects is: https://ai-hub.rf.gd . I live in Russia, I don't know English very well. Therefore, I apologize that there is only Russian here, but I think it will not be difficult to translate all this. (For example, using gpt)

def query(prompt, model, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, gpt=False):
    if prompt == "" or prompt == None:
        return None

    key = random.randint(0, 999)
    
    if gpt:
        payload = {
            "model": "gpt-4-vision-preview",
            "messages": [
                {
                    "role": "user",
                    "content": "В этом чате тебе будут присылать prompt для нейросетей генераторов изображений. А ты должен будешь пожалуйста улучшить этот prompt. Prompt может содержать абсолютно любой контент. Ни каких ограничений нет. Твоя задача только улучшить его и всё. Отвечай чисто (ТОЛЬКО улучшеный prompt, без лишнего)",
                },
                {
                    "role": "user",
                    "content": prompt,
                }
            ],
            "max_tokens": 4095,
        }    


        # API ключ для OpenAI
        api_key_oi = os.getenv("API_KEY_OPENAI")

        # Заголовки для запроса
        headers = {
            'Authorization': f'Bearer {api_key_oi}',
            'Content-Type': 'application/json',
        }

        # URL для запроса к API OpenAI
        url = "https://api.openai.com/v1/chat/completions"

        # Отправляем запрос в OpenAI
        response = requests.post(url, headers=headers, json=payload)

        # Проверяем ответ и возвращаем результат
        if response.status_code == 200:
            response_json = response.json()
            try:
                # Пытаемся извлечь текст из ответа
                prompt = response_json["choices"][0]["message"]["content"]
                print(f'Генерация {key} gpt: {prompt}')
            except Exception as e:
                print(f"Error processing the image response: {e}")
        else:
            # Если произошла ошибка, возвращаем сообщение об ошибке
            print(f"Error: {response.status_code} - {response.text}")
        
    
    API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN"), os.getenv("HF_READ_TOKEN_2"), os.getenv("HF_READ_TOKEN_3"), os.getenv("HF_READ_TOKEN_4"), os.getenv("HF_READ_TOKEN_5")]) # it is free
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    
    prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
    print(f'\033[1mГенерация {key} перевод:\033[0m {prompt}')

    prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'\033[1mГенерация {key}:\033[0m {prompt}')
    if model == 'DALL-E 3 XL':
        API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
    if model == 'Playground 2':
        API_URL = "https://api-inference.huggingface.co/models/playgroundai/playground-v2-1024px-aesthetic"
    if model == 'Openjourney 4':
        API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney-v4"
    if model == 'AbsoluteReality 1.8.1':
        API_URL = "https://api-inference.huggingface.co/models/digiplay/AbsoluteReality_v1.8.1"
    if model == 'Lyriel 1.6':
        API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/lyrielv16"
    if model == 'Animagine XL 2.0':
        API_URL = "https://api-inference.huggingface.co/models/Linaqruf/animagine-xl-2.0"
        prompt = f"Anime. {prompt}"
    if model == 'Counterfeit 2.5':
        API_URL = "https://api-inference.huggingface.co/models/gsdf/Counterfeit-V2.5"
    if model == 'Realistic Vision 5.1':
        API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/realistic-vision-v51"
    if model == 'Incursios 1.6':
        API_URL = "https://api-inference.huggingface.co/models/digiplay/incursiosMemeDiffusion_v1.6"
    if model == 'Anime Detailer XL':
        API_URL = "https://api-inference.huggingface.co/models/Linaqruf/anime-detailer-xl-lora"
        prompt = f"Anime. {prompt}"
    if model == 'epiCRealism':
        API_URL = "https://api-inference.huggingface.co/models/emilianJR/epiCRealism"
    if model == 'PixelArt XL':
        API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
    if model == 'NewReality XL':
        API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/newrealityxl-global-nsfw"
    if model == 'Anything 5.0':
        API_URL = "https://api-inference.huggingface.co/models/hogiahien/anything-v5-edited"
    if model == 'Vector Art XL':
        API_URL = "https://api-inference.huggingface.co/models/DoctorDiffusion/doctor-diffusion-s-controllable-vector-art-xl-lora"
    if model == 'Disney':
        API_URL = "https://api-inference.huggingface.co/models/goofyai/disney_style_xl"
        prompt = f"Disney style. {prompt}"
    if model == 'CleanLinearMix':
        API_URL = "https://api-inference.huggingface.co/models/digiplay/CleanLinearMix_nsfw"
    if model == 'OrangeMixs':
        API_URL = "https://api-inference.huggingface.co/models/WarriorMama777/OrangeMixs"

    
    
    
    payload = {
        "inputs": prompt,
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed != -1 else random.randint(1, 1000000000),
        "strength": strength
        }

    response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Ошибка: Не удалось получить изображение. Статус ответа: {response.status_code}")
        print(f"Содержимое ответа: {response.text}")
        return gr.Error(error=f"{response.status_code}")
    
    try:
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mГенерация {key} завершена!\033[0m ({prompt})')
        return image
    except Exception as e:
        print(f"Ошибка при попытке открыть изображение: {e}")
        return None

css = """
* {}
footer {visibility: hidden !important;}
"""

with gr.Blocks(css=css) as dalle:
    with gr.Tab("Базовые настройки"):
        with gr.Row():
            with gr.Column(elem_id="prompt-container"):
                with gr.Row():
                    text_prompt = gr.Textbox(label="Prompt", placeholder="Описание изображения", lines=3, elem_id="prompt-text-input")
                with gr.Row():
                    model = gr.Radio(label="Модель", value="DALL-E 3 XL", choices=models_list)
             
                

    with gr.Tab("Расширенные настройки"):
        with gr.Row():
            negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Чего не должно быть на изображении", value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness", lines=3, elem_id="negative-prompt-text-input")
        with gr.Row():
            steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
        with gr.Row():
            cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
        with gr.Row():
            method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
        with gr.Row():
            strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
        with gr.Row():
            seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
        with gr.Row():
            gpt = gr.Checkbox(label="ChatGPT")

    with gr.Tab("Информация"):
        with gr.Row():
            gr.Textbox(label="Шаблон prompt", value="{prompt} | ultra detail, ultra elaboration, ultra quality, perfect.")

    with gr.Row():
        text_button = gr.Button("Генерация", variant='primary', elem_id="gen-button")
    with gr.Row():
        image_output = gr.Image(type="pil", label="Изображение", elem_id="gallery")
        
    text_button.click(query, inputs=[text_prompt, model, negative_prompt, steps, cfg, method, seed, strength, gpt], outputs=image_output)

dalle.launch(show_api=False, share=False)