File size: 6,177 Bytes
f86ef0c 55f4105 f86ef0c 521a864 742c437 f86ef0c 616c847 3b8a061 3e0bf53 c0b30e1 6146bcd 60053a1 55f4105 9982bae 55f4105 713d510 cd28a2d 8fb92bc cd28a2d f00b283 f7c0284 f00b283 990502e f00b283 34ac09b 990502e db91780 f00b283 260ef11 0a81284 961b0b9 f00b283 45ad881 5847e71 ac0a6da 3341831 1ec9bd2 2f6b89f 6cd5e81 9e2ce11 bddaca0 5847e71 3864ee5 3b8a061 713d510 f86ef0c f5b7834 f86ef0c 3c4df5f f86ef0c b38f76f e866b68 f86ef0c 1b0d98c eb5cb7c f86ef0c 6b98730 3eb21bd e577eb4 ccf7d79 3e0bf53 7c7de36 e577eb4 ef5cf54 22ebab0 7c7de36 e7fd4fc f86ef0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
from deep_translator import GoogleTranslator
from langdetect import detect
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
models_list = ["AbsoluteReality 1.8.1", "DALL-E 3 XL", "Playground 2", "Openjourney 4", "Lyriel 1.6", "Animagine XL 2.0", "Counterfeit 2.5", "Realistic Vision 5.1", "Incursios 1.6", "Anime Detailer XL", "Vector Art XL", "epiCRealism", "PixelArt XL", "NewReality XL", "Anything 5.0", "PixArt XL 2.0", "Disney Cartoon", "CleanLinearMix", "Waifu 1.4"]
def query(prompt, model, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=None):
if prompt == None:
return None
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN"), os.getenv("HF_READ_TOKEN_2"), os.getenv("HF_READ_TOKEN_3"), os.getenv("HF_READ_TOKEN_4"), os.getenv("HF_READ_TOKEN_5")]) # it is free
headers = {"Authorization": f"Bearer {API_TOKEN}"}
language = detect(prompt)
key = random.randint(0, 999)
print(f'\033[1mГенерация {key}:\033[0m {prompt}')
if language == 'ru':
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
print(f'\033[1mГенерация {key} перевод:\033[0m {prompt}')
if model == 'DALL-E 3 XL':
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
if model == 'Playground 2':
API_URL = "https://api-inference.huggingface.co/models/playgroundai/playground-v2-1024px-aesthetic"
if model == 'Openjourney 4':
API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney-v4"
if model == 'AbsoluteReality 1.8.1':
API_URL = "https://api-inference.huggingface.co/models/digiplay/AbsoluteReality_v1.8.1"
if model == 'Lyriel 1.6':
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/lyrielv16"
if model == 'Animagine XL 2.0':
API_URL = "https://api-inference.huggingface.co/models/Linaqruf/animagine-xl-2.0"
if model == 'Counterfeit 2.5':
API_URL = "https://api-inference.huggingface.co/models/gsdf/Counterfeit-V2.5"
if model == 'Realistic Vision 5.1':
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/realistic-vision-v51"
if model == 'Incursios 1.6':
API_URL = "https://api-inference.huggingface.co/models/digiplay/incursiosMemeDiffusion_v1.6"
if model == 'Anime Detailer XL':
API_URL = "https://api-inference.huggingface.co/models/Linaqruf/anime-detailer-xl-lora"
if model == 'epiCRealism':
API_URL = "https://api-inference.huggingface.co/models/emilianJR/epiCRealism"
if model == 'PixelArt XL':
API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
if model == 'NewReality XL':
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/newrealityxl-global-nsfw"
if model == 'Anything 5.0':
API_URL = "https://api-inference.huggingface.co/models/hogiahien/anything-v5-edited"
if model == 'PixArt XL 2.0':
API_URL = "https://api-inference.huggingface.co/models/PixArt-alpha/PixArt-XL-2-1024-MS"
if model == 'Vector Art XL':
API_URL = "https://api-inference.huggingface.co/models/DoctorDiffusion/doctor-diffusion-s-controllable-vector-art-xl-lora"
if model == 'Disney Cartoon':
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixal-cartoon"
if model == 'CleanLinearMix':
API_URL = "https://api-inference.huggingface.co/models/digiplay/CleanLinearMix_nsfw"
if model == 'Waifu 1.4':
API_URL = "https://api-inference.huggingface.co/models/gisohi6975/nsfw-waifu-diffusion"
payload = {
"inputs": prompt,
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not -1 else random.randint(1, 1000000000)
}
image_bytes = requests.post(API_URL, headers=headers, json=payload).content
image = Image.open(io.BytesIO(image_bytes))
print(f'\033[1mГенерация {key} завершена!\033[0m ({prompt})')
return image
css = """
footer {visibility: hidden !important;}
"""
with gr.Blocks(css=css) as dalle:
with gr.Tab("Базовые настройки"):
with gr.Row():
with gr.Column(elem_id="prompt-container"):
text_prompt = gr.Textbox(label="Prompt", placeholder="Описание изображения", lines=3, elem_id="prompt-text-input")
model = gr.Radio(label="Модель", value="DALL-E 3 XL", choices=models_list)
with gr.Tab("Расширенные настройки"):
gr.Row():
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Чего не должно быть на изображении", value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness", lines=3, elem_id="negative-prompt-text-input")
gr.Row():
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
gr.Row():
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
gr.Row():
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
gr.Row():
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
with gr.Row():
text_button = gr.Button("Генерация", variant='primary', elem_id="gen-button")
with gr.Row():
image_output = gr.Image(type="pil", label="Изображение", elem_id="gallery")
text_button.click(query, inputs=[text_prompt, model, negative_prompt, steps, cfg, method, seed], outputs=image_output)
dalle.launch(show_api=False) |