|
import gradio as gr |
|
import requests |
|
import io |
|
import random |
|
import os |
|
from PIL import Image |
|
from deep_translator import GoogleTranslator |
|
from langdetect import detect |
|
|
|
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl" |
|
API_TOKEN = os.getenv("HF_READ_TOKEN") |
|
headers = {"Authorization": f"Bearer {API_TOKEN}"} |
|
timeout = 100 |
|
models_list = ["AbsoluteReality 1.8.1", "DALL-E 3 XL", "Playground 2", "Openjourney 4", "Lyriel 1.6", "Animagine XL 2.0", "Counterfeit 2.5", "Realistic Vision 5.1", "Incursios 1.6", "Anime Detailer XL", "Vector Art XL", "epiCRealism", "PixelArt XL", "NewReality XL", "Anything 5.0", "Disney", "CleanLinearMix", "OrangeMixs"] |
|
|
|
|
|
|
|
def query(prompt, model, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1): |
|
if prompt == "" or prompt == None: |
|
return None |
|
|
|
|
|
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN"), os.getenv("HF_READ_TOKEN_2"), os.getenv("HF_READ_TOKEN_3"), os.getenv("HF_READ_TOKEN_4"), os.getenv("HF_READ_TOKEN_5")]) |
|
headers = {"Authorization": f"Bearer {API_TOKEN}"} |
|
language = detect(prompt) |
|
key = random.randint(0, 999) |
|
|
|
print(f'\033[1mГенерация {key}:\033[0m {prompt}') |
|
if language == 'ru': |
|
prompt = GoogleTranslator(source='ru', target='en').translate(prompt) |
|
print(f'\033[1mГенерация {key} перевод:\033[0m {prompt}') |
|
|
|
if model == 'DALL-E 3 XL': |
|
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl" |
|
if model == 'Playground 2': |
|
API_URL = "https://api-inference.huggingface.co/models/playgroundai/playground-v2-1024px-aesthetic" |
|
if model == 'Openjourney 4': |
|
API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney-v4" |
|
if model == 'AbsoluteReality 1.8.1': |
|
API_URL = "https://api-inference.huggingface.co/models/digiplay/AbsoluteReality_v1.8.1" |
|
if model == 'Lyriel 1.6': |
|
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/lyrielv16" |
|
if model == 'Animagine XL 2.0': |
|
API_URL = "https://api-inference.huggingface.co/models/Linaqruf/animagine-xl-2.0" |
|
if model == 'Counterfeit 2.5': |
|
API_URL = "https://api-inference.huggingface.co/models/gsdf/Counterfeit-V2.5" |
|
if model == 'Realistic Vision 5.1': |
|
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/realistic-vision-v51" |
|
if model == 'Incursios 1.6': |
|
API_URL = "https://api-inference.huggingface.co/models/digiplay/incursiosMemeDiffusion_v1.6" |
|
if model == 'Anime Detailer XL': |
|
API_URL = "https://api-inference.huggingface.co/models/Linaqruf/anime-detailer-xl-lora" |
|
if model == 'epiCRealism': |
|
API_URL = "https://api-inference.huggingface.co/models/emilianJR/epiCRealism" |
|
if model == 'PixelArt XL': |
|
API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl" |
|
if model == 'NewReality XL': |
|
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/newrealityxl-global-nsfw" |
|
if model == 'Anything 5.0': |
|
API_URL = "https://api-inference.huggingface.co/models/hogiahien/anything-v5-edited" |
|
if model == 'Vector Art XL': |
|
API_URL = "https://api-inference.huggingface.co/models/DoctorDiffusion/doctor-diffusion-s-controllable-vector-art-xl-lora" |
|
if model == 'Disney': |
|
API_URL = "https://api-inference.huggingface.co/models/goofyai/disney_style_xl" |
|
prompt = f"Disney стиль. {prompt}" |
|
if model == 'CleanLinearMix': |
|
API_URL = "https://api-inference.huggingface.co/models/digiplay/CleanLinearMix_nsfw" |
|
if model == 'OrangeMixs': |
|
API_URL = "https://api-inference.huggingface.co/models/WarriorMama777/OrangeMixs" |
|
|
|
prompt = f"{prompt} | ультра детализация, ультра проработка, ультра качество, идеально." |
|
|
|
payload = { |
|
"inputs": prompt, |
|
"is_negative": is_negative, |
|
"steps": steps, |
|
"cfg_scale": cfg_scale, |
|
"seed": seed if seed != -1 else random.randint(1, 1000000000) |
|
} |
|
|
|
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) |
|
if response.status_code != 200: |
|
print(f"Ошибка: Не удалось получить изображение. Статус ответа: {response.status_code}") |
|
print(f"Содержимое ответа: {response.text}") |
|
return None |
|
|
|
try: |
|
image_bytes = response.content |
|
image = Image.open(io.BytesIO(image_bytes)) |
|
print(f'\033[1mГенерация {key} завершена!\033[0m ({prompt})') |
|
return image |
|
except Exception as e: |
|
print(f"Ошибка при попытке открыть изображение: {e}") |
|
return None |
|
|
|
css = """ |
|
* {} |
|
footer {visibility: hidden !important;} |
|
""" |
|
|
|
with gr.Blocks(css=css) as dalle: |
|
with gr.Tab("Базовые настройки"): |
|
with gr.Row(): |
|
with gr.Column(elem_id="prompt-container"): |
|
with gr.Row(): |
|
text_prompt = gr.Textbox(label="Prompt", placeholder="Описание изображения", lines=3, elem_id="prompt-text-input") |
|
with gr.Row(): |
|
model = gr.Radio(label="Модель", value="DALL-E 3 XL", choices=models_list) |
|
|
|
|
|
|
|
with gr.Tab("Расширенные настройки"): |
|
with gr.Row(): |
|
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Чего не должно быть на изображении", value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness", lines=3, elem_id="negative-prompt-text-input") |
|
with gr.Row(): |
|
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1) |
|
with gr.Row(): |
|
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1) |
|
with gr.Row(): |
|
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"]) |
|
with gr.Row(): |
|
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) |
|
|
|
|
|
with gr.Row(): |
|
text_button = gr.Button("Генерация", variant='primary', elem_id="gen-button") |
|
with gr.Row(): |
|
image_output = gr.Image(type="pil", label="Изображение", elem_id="gallery") |
|
|
|
text_button.click(query, inputs=[text_prompt, model, negative_prompt, steps, cfg, method, seed], outputs=image_output) |
|
|
|
dalle.launch(show_api=False, share=False) |