HH-ImgGen / app.py
Rooni's picture
Update app.py
a6c4453
raw
history blame
6.61 kB
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
from deep_translator import GoogleTranslator
from langdetect import detect
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
models_list = ["AbsoluteReality 1.8.1", "DALL-E 3 XL", "Playground 2", "Openjourney 4", "Lyriel 1.6", "Animagine XL 2.0", "Counterfeit 2.5", "Realistic Vision 5.1", "Incursios 1.6", "Anime Detailer XL", "Vector Art XL", "epiCRealism", "PixelArt XL", "NewReality XL", "Anything 5.0", "PixArt XL 2.0", "Disney Cartoon", "CleanLinearMix", "Waifu 1.4"]
def query(prompt, model, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, width, height):
if prompt == "" or prompt == None:
return None
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN"), os.getenv("HF_READ_TOKEN_2"), os.getenv("HF_READ_TOKEN_3"), os.getenv("HF_READ_TOKEN_4"), os.getenv("HF_READ_TOKEN_5")]) # it is free
headers = {"Authorization": f"Bearer {API_TOKEN}"}
language = detect(prompt)
key = random.randint(0, 999)
print(f'\033[1mГенерация {key}:\033[0m {prompt}')
if language == 'ru':
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
print(f'\033[1mГенерация {key} перевод:\033[0m {prompt}')
if model == 'DALL-E 3 XL':
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
if model == 'Playground 2':
API_URL = "https://api-inference.huggingface.co/models/playgroundai/playground-v2-1024px-aesthetic"
if model == 'Openjourney 4':
API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney-v4"
if model == 'AbsoluteReality 1.8.1':
API_URL = "https://api-inference.huggingface.co/models/digiplay/AbsoluteReality_v1.8.1"
if model == 'Lyriel 1.6':
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/lyrielv16"
if model == 'Animagine XL 2.0':
API_URL = "https://api-inference.huggingface.co/models/Linaqruf/animagine-xl-2.0"
if model == 'Counterfeit 2.5':
API_URL = "https://api-inference.huggingface.co/models/gsdf/Counterfeit-V2.5"
if model == 'Realistic Vision 5.1':
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/realistic-vision-v51"
if model == 'Incursios 1.6':
API_URL = "https://api-inference.huggingface.co/models/digiplay/incursiosMemeDiffusion_v1.6"
if model == 'Anime Detailer XL':
API_URL = "https://api-inference.huggingface.co/models/Linaqruf/anime-detailer-xl-lora"
if model == 'epiCRealism':
API_URL = "https://api-inference.huggingface.co/models/emilianJR/epiCRealism"
if model == 'PixelArt XL':
API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
if model == 'NewReality XL':
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/newrealityxl-global-nsfw"
if model == 'Anything 5.0':
API_URL = "https://api-inference.huggingface.co/models/hogiahien/anything-v5-edited"
if model == 'PixArt XL 2.0':
API_URL = "https://api-inference.huggingface.co/models/PixArt-alpha/PixArt-XL-2-1024-MS"
if model == 'Vector Art XL':
API_URL = "https://api-inference.huggingface.co/models/DoctorDiffusion/doctor-diffusion-s-controllable-vector-art-xl-lora"
if model == 'Disney Cartoon':
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixal-cartoon"
if model == 'CleanLinearMix':
API_URL = "https://api-inference.huggingface.co/models/digiplay/CleanLinearMix_nsfw"
if model == 'Waifu 1.4':
API_URL = "https://api-inference.huggingface.co/models/gisohi6975/nsfw-waifu-diffusion"
payload = {
"inputs": prompt,
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed != -1 else random.randint(1, 1000000000),
"width": width,
"height": height
}
image_bytes = requests.post(API_URL, headers=headers, json=payload).content
image = Image.open(io.BytesIO(image_bytes))
print(f'\033[1mГенерация {key} завершена!\033[0m ({prompt})')
return image
css = """
footer {visibility: hidden !important;}
"""
with gr.Blocks(css=css) as dalle:
with gr.Tab("Базовые настройки"):
with gr.Row():
with gr.Column(elem_id="prompt-container"):
with gr.Row():
text_prompt = gr.Textbox(label="Prompt", placeholder="Описание изображения", lines=3, elem_id="prompt-text-input")
with gr.Row():
model = gr.Radio(label="Модель", value="DALL-E 3 XL", choices=models_list)
with gr.Tab("Расширенные настройки"):
with gr.Row():
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Чего не должно быть на изображении", value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry, text, fuzziness", lines=3, elem_id="negative-prompt-text-input")
with gr.Row():
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
with gr.Row():
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
with gr.Row():
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
with gr.Row():
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
with gr.Tab("Beta"):
with gr.Row():
width = gr.Slider(label="Ширина", value=512, minimum=15, maximum=1024, step=1)
height = gr.Slider(label="Длина", value=512, minimum=15, maximum=1024, step=1)
with gr.Row():
text_button = gr.Button("Генерация", variant='primary', elem_id="gen-button")
with gr.Row():
image_output = gr.Image(type="pil", label="Изображение", elem_id="gallery")
text_button.click(query, inputs=[text_prompt, model, negative_prompt, steps, cfg, method, seed, width, height], outputs=image_output)
dalle.launch(show_api=False)