File size: 12,436 Bytes
f798ab4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59226c4
f798ab4
 
 
 
 
59226c4
f798ab4
 
59226c4
f798ab4
 
 
 
 
 
 
 
 
 
59226c4
 
 
f798ab4
 
 
 
 
 
 
 
 
 
 
59226c4
f798ab4
 
 
 
 
59226c4
f798ab4
59226c4
f798ab4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59226c4
f798ab4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59226c4
f798ab4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59226c4
 
f798ab4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import gradio as gr
from gradio_client import Client
from datasets import load_dataset
from huggingface_hub import InferenceClient
import random
from PIL import Image
import os
from random import randint
from datetime import datetime
import pathlib
import numpy as np
from prompts import __all__ as system_prompts
from all_models import __all__ as all_models
# Initialize API clients and other setups
token = os.getenv('HF_TOKEN')
sdxl_client = Client("K00B404/Stable-Diffusion-XL-Serverless", hf_token=token)
seed = randint(0, 12345678)
hf_client = InferenceClient(
    #"georgesung/llama2_7b_chat_uncensored",
    "Xennon-BD/Qwen-uncensored-v2",
    #"meta-llama/Llama-3.2-1B-Instruct", 
    token=token
)
hf_img_client = InferenceClient(all_models[0], token=token)

qwen_client = Client("K00B404/chatQwenne", hf_token=token)
personas_dataset = load_dataset("MohamedRashad/FinePersonas-Lite", split="train")
personas_list = personas_dataset["persona"][:100]
OUTPUT_DIR = "generated_characters"
pathlib.Path(OUTPUT_DIR).mkdir(exist_ok=True)

def get_timestamp_filename():
    return datetime.now().strftime("%Y%m%d_%H%M%S")

def save_outputs(image, description, base_filename):
    try:
        image_path = os.path.join(OUTPUT_DIR, f"{base_filename}.png")
        text_path = os.path.join(OUTPUT_DIR, f"{base_filename}.txt")
        image.save(image_path, format='PNG')
        with open(text_path, 'w', encoding='utf-8') as f:
            f.write(description)
        return image_path, text_path
    except Exception:
        return None, None



# Define the respond function using the HuggingFace InferenceClient
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    stream=False,
):
    messages = [{"role": "system", "content": system_message}]

    for user_msg, assistant_msg in history:
        if user_msg:
            messages.append({"role": "user", "content": user_msg})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})

    messages.append({"role": "user", "content": message+"|"})

    response = ""
    if stream:
        for message in hf_client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=stream,
            temperature=temperature,
            top_p=top_p,
        ):
            token = message.choices[0].delta.content
            response += token
            yield response
    else:
        response_data = hf_client.chat_completion(
            messages,
            max_tokens=max_tokens,
            stream=stream,
            temperature=temperature,
            top_p=top_p,
        )
        yield response_data.choices[0].message.content


# Character Creator Functions
def generate_character_description(character_prompt, max_length):
    pre_force="a full body image , from  head to toe image of "
    pro_force=" 8k photorealistic "
    
    try:
        response_generator = respond(
            message=pre_force+character_prompt+pro_force,
            history=[],
            system_message=system_prompts[0],
            max_tokens=max_length // 4,
            temperature=0.9,
            top_p=0.95,
            stream=False,
        )
        result = "".join(response_generator)
        return result[:max_length]
    except Exception as e:
        return f"Error: {str(e)}"
    
    
    '''try:
        result = qwen_client.predict(
            message=character_prompt,
            system_message=system_prompts[0],
            max_tokens=max_length // 4,
            temperature=0.9,
            top_p=0.95,
            api_name="/chat"
        )
        return result[:max_length]
    except Exception as e:
        return f"Error: {str(e)}"'''


def generate_character(
            #model="stabilityai/stable-diffusion-2-1", 
            character_concept, 
            generate_description, 
            negative_prompt, 
            num_inference_steps, 
            guidance_scale, 
            max_description_length, 
            lora_repo_id
        ):
    
    '''
    prompt (str) β€”                         The prompt to generate an image from.
    negative_prompt (List[str, optional) β€” One or several prompt to guide what NOT to include in image generation.
    height (float, optional) β€”             The height in pixels of the image to generate.
    width (float, optional) β€”              The width in pixels of the image to generate.
    num_inference_steps (int, optional) β€”  The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
    guidance_scale (float, optional) β€”     A higher guidance scale value encourages the model to generate images closely linked to the text prompt, but values too high may cause saturation and other artifacts.
    model (str, optional) β€”                The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed Inference Endpoint. If not provided, the default recommended text-to-image model will be used. Defaults to None.
    scheduler (str, optional) β€”            Override the scheduler with a compatible one.
    target_size (TextToImageTargetSize, optional) β€” The size in pixel of the output image
    seed (int, optional) β€”                 Seed for the random number generator. 
    
    Returns
    Image
    '''
    description = generate_character_description(character_concept, max_description_length) if generate_description else character_concept
    prompt = f"{character_concept}\n{description}"
    if lora_repo_id:
        prompt += f" <lora:{lora_repo_id}:1.0>"
    try:
        #seed = randint(0, 12345678)
        # output is a PIL.Image object
        #image = hf_img_client.text_to_image(prompt=prompt, negative_prompt=negative_prompt,num_inference_steps=num_inference_steps,guidance_scale=guidance_scale,seed=seed)
        # Save the image to a file
        ''' base_filename = get_timestamp_filename()
        image_path = os.path.join(OUTPUT_DIR, f"{base_filename}.png")
        image.save(image_path, format='PNG')
    
        # Save the description
        text_path = os.path.join(OUTPUT_DIR, f"{base_filename}.txt")
        with open(text_path, 'w', encoding='utf-8') as f:
            f.write(description)
    
        save_message = f"Files saved as:\nImage: {image_path}\nDescription: {text_path}"
        return image, description, save_message
        except Exception as e:
            return None, f"Error: {str(e)}", ""
            '''
            
        image = sdxl_client.predict(
            prompt=prompt, is_negative=negative_prompt, steps=num_inference_steps, cfg_scale=guidance_scale, sampler="DIMM", seed=-1, strength=0.9, api_name="/query"
        )
        base_filename = get_timestamp_filename()
        image_path, text_path = save_outputs(image, description, base_filename)
        save_message = f"Files saved as:\nImage: {image_path}\nDescription: {text_path}" if image_path and text_path else "Files not saved locally"
        return image, description, save_message
    except Exception as e:
        return None, f"Error: {str(e)}", ""
        
        


# Boxed Inpainting Functions
def query_gligen(image, prompt, box_x1, box_y1, box_x2, box_y2, object_prompt):
    # Simulate the GLIGEN API call
    return image  # Placeholder for actual implementation

def process_drawn_boxes(image_data, boxes, object_prompt, main_prompt):
    try:
        image = image_data["composite"]  # Use the final edited image
        if not boxes or len(boxes) == 0:
            return image, "No boxes drawn. Please draw a box."
        box = boxes[-1]
        height, width = image.size
        normalized_box = [box[0] / width, box[1] / height, box[2] / width, box[3] / height]
        result_image = query_gligen(
            image=image,
            prompt=main_prompt,
            box_x1=normalized_box[0],
            box_y1=normalized_box[1],
            box_x2=normalized_box[2],
            box_y2=normalized_box[3],
            object_prompt=object_prompt,
        )
        base_filename = get_timestamp_filename()
        image_path, _ = save_outputs(result_image, f"GLIGEN: {main_prompt} - Object: {object_prompt}", base_filename)
        save_message = f"Image saved as: {image_path}" if image_path else "File not saved locally"
        return result_image, save_message
    except Exception as e:
        return image_data["composite"], f"Error: {str(e)}"

def capture_box_drawing(image, sketch_data, object_prompt, main_prompt):
    """
    Handles box drawing based on the freehand sketch.
    """
    try:
        # Check if the user has drawn anything
        if sketch_data is None:
            return image, "No box drawn. Please draw a rectangular box."

        # Convert the sketch into bounding box coordinates
        # Extract non-transparent pixels from the sketch
        sketch_np = np.array(sketch_data)
        rows, cols = np.where(sketch_np[..., -1] > 0)  # Alpha > 0 indicates a drawing

        if rows.size == 0 or cols.size == 0:
            return image, "No box detected. Ensure you draw a closed box."

        # Calculate bounding box
        x1, y1, x2, y2 = cols.min(), rows.min(), cols.max(), rows.max()

        # Process the image with the drawn bounding box
        result_image = query_gligen(
            image=image,
            prompt=main_prompt,
            box_x1=x1 / image.width,
            box_y1=y1 / image.height,
            box_x2=x2 / image.width,
            box_y2=y2 / image.height,
            object_prompt=object_prompt,
        )

        # Save and return
        base_filename = get_timestamp_filename()
        image_path, _ = save_outputs(result_image, f"Boxed Inpainting: {main_prompt}", base_filename)
        save_message = f"Image saved as: {image_path}" if image_path else "File not saved locally"
        return result_image, save_message
    except Exception as e:
        return image, f"Error: {str(e)}"

# Interface
with gr.Blocks() as demo:
    with gr.Tabs():
        with gr.Tab("Character Creator"):
            gr.Markdown("### Generate Characters")
            with gr.Row():
                char_concept = gr.Textbox(label="Character Concept")
                generate_desc = gr.Checkbox(label="Generate Description", value=True)
                negative_prompt = gr.Textbox(label="Negative Prompt", value="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy,extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation,clothing, cloths ,pants, under pants, top, covered skin, underwear,gear, cloth, belt, cartoon, missing vagina,small vagina, small breasts, small nipples")
            with gr.Row():
                steps = gr.Slider(1, 50, value=20, step=1,label="Steps")
                guidance = gr.Slider(1, 20, value=7, step=1,label="Guidance")
                max_desc_len = gr.Number(value=1024, label="Max Description Length")
                lora_repo = gr.Textbox(label="Lora Repo ID")
            char_image = gr.Image(label="Generated Character")
            char_desc = gr.Textbox(label="Generated Description")
            save_info = gr.Textbox(label="Save Info")
            gen_btn = gr.Button("Generate")
            
            gen_btn.click(
                generate_character,
                inputs=[char_concept, generate_desc, negative_prompt, steps, guidance, max_desc_len, lora_repo],
                outputs=[char_image, char_desc, save_info],
            )
   
        with gr.Tab("Boxed Inpainting"):
            gr.Markdown("### Boxed Inpainting Tool")
            image_input = gr.ImageEditor(label="Edit and Draw", type="numpy", crop_size=None)
            boxes_input = gr.HighlightedText(label="Draw Boxes")
            object_prompt = gr.Textbox(label="Object Prompt")
            main_prompt = gr.Textbox(label="Main Prompt")
            inp_image = gr.Image(label="Processed Image")
            inp_save_info = gr.Textbox(label="Save Info")
            inp_btn = gr.Button("Process")
            inp_btn.click(
                process_drawn_boxes,
                inputs=[image_input, boxes_input, object_prompt, main_prompt],
                outputs=[inp_image, inp_save_info],
            )

if __name__ == "__main__":
    demo.launch()