Text-2-Speech / app.py
K00B404's picture
Update app.py
f798ab4 verified
raw
history blame
12.4 kB
import gradio as gr
from gradio_client import Client
from datasets import load_dataset
from huggingface_hub import InferenceClient
import random
from PIL import Image
import os
from random import randint
from datetime import datetime
import pathlib
import numpy as np
from prompts import __all__ as system_prompts
from all_models import __all__ as all_models
# Initialize API clients and other setups
token = os.getenv('HF_TOKEN')
sdxl_client = Client("K00B404/Stable-Diffusion-XL-Serverless", hf_token=token)
seed = randint(0, 12345678)
hf_client = InferenceClient(
#"georgesung/llama2_7b_chat_uncensored",
"Xennon-BD/Qwen-uncensored-v2",
#"meta-llama/Llama-3.2-1B-Instruct",
token=token
)
hf_img_client = InferenceClient(all_models[0], token=token)
qwen_client = Client("K00B404/chatQwenne", hf_token=token)
personas_dataset = load_dataset("MohamedRashad/FinePersonas-Lite", split="train")
personas_list = personas_dataset["persona"][:100]
OUTPUT_DIR = "generated_characters"
pathlib.Path(OUTPUT_DIR).mkdir(exist_ok=True)
def get_timestamp_filename():
return datetime.now().strftime("%Y%m%d_%H%M%S")
def save_outputs(image, description, base_filename):
try:
image_path = os.path.join(OUTPUT_DIR, f"{base_filename}.png")
text_path = os.path.join(OUTPUT_DIR, f"{base_filename}.txt")
image.save(image_path, format='PNG')
with open(text_path, 'w', encoding='utf-8') as f:
f.write(description)
return image_path, text_path
except Exception:
return None, None
# Define the respond function using the HuggingFace InferenceClient
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
stream=False,
):
messages = [{"role": "system", "content": system_message}]
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message+"|"})
response = ""
if stream:
for message in hf_client.chat_completion(
messages,
max_tokens=max_tokens,
stream=stream,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
else:
response_data = hf_client.chat_completion(
messages,
max_tokens=max_tokens,
stream=stream,
temperature=temperature,
top_p=top_p,
)
yield response_data.choices[0].message.content
# Character Creator Functions
def generate_character_description(character_prompt, max_length):
pre_force="a full body image , from head to toe image of "
pro_force=" 8k photorealistic "
try:
response_generator = respond(
message=pre_force+character_prompt+pro_force,
history=[],
system_message=system_prompts[0],
max_tokens=max_length // 4,
temperature=0.9,
top_p=0.95,
stream=False,
)
result = "".join(response_generator)
return result[:max_length]
except Exception as e:
return f"Error: {str(e)}"
'''try:
result = qwen_client.predict(
message=character_prompt,
system_message=system_prompts[0],
max_tokens=max_length // 4,
temperature=0.9,
top_p=0.95,
api_name="/chat"
)
return result[:max_length]
except Exception as e:
return f"Error: {str(e)}"'''
def generate_character(
#model="stabilityai/stable-diffusion-2-1",
character_concept,
generate_description,
negative_prompt,
num_inference_steps,
guidance_scale,
max_description_length,
lora_repo_id
):
'''
prompt (str) — The prompt to generate an image from.
negative_prompt (List[str, optional) — One or several prompt to guide what NOT to include in image generation.
height (float, optional) — The height in pixels of the image to generate.
width (float, optional) — The width in pixels of the image to generate.
num_inference_steps (int, optional) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
guidance_scale (float, optional) — A higher guidance scale value encourages the model to generate images closely linked to the text prompt, but values too high may cause saturation and other artifacts.
model (str, optional) — The model to use for inference. Can be a model ID hosted on the Hugging Face Hub or a URL to a deployed Inference Endpoint. If not provided, the default recommended text-to-image model will be used. Defaults to None.
scheduler (str, optional) — Override the scheduler with a compatible one.
target_size (TextToImageTargetSize, optional) — The size in pixel of the output image
seed (int, optional) — Seed for the random number generator.
Returns
Image
'''
description = generate_character_description(character_concept, max_description_length) if generate_description else character_concept
prompt = f"{character_concept}\n{description}"
if lora_repo_id:
prompt += f" <lora:{lora_repo_id}:1.0>"
try:
#seed = randint(0, 12345678)
# output is a PIL.Image object
#image = hf_img_client.text_to_image(prompt=prompt, negative_prompt=negative_prompt,num_inference_steps=num_inference_steps,guidance_scale=guidance_scale,seed=seed)
# Save the image to a file
''' base_filename = get_timestamp_filename()
image_path = os.path.join(OUTPUT_DIR, f"{base_filename}.png")
image.save(image_path, format='PNG')
# Save the description
text_path = os.path.join(OUTPUT_DIR, f"{base_filename}.txt")
with open(text_path, 'w', encoding='utf-8') as f:
f.write(description)
save_message = f"Files saved as:\nImage: {image_path}\nDescription: {text_path}"
return image, description, save_message
except Exception as e:
return None, f"Error: {str(e)}", ""
'''
image = sdxl_client.predict(
prompt=prompt, is_negative=negative_prompt, steps=num_inference_steps, cfg_scale=guidance_scale, sampler="DIMM", seed=-1, strength=0.9, api_name="/query"
)
base_filename = get_timestamp_filename()
image_path, text_path = save_outputs(image, description, base_filename)
save_message = f"Files saved as:\nImage: {image_path}\nDescription: {text_path}" if image_path and text_path else "Files not saved locally"
return image, description, save_message
except Exception as e:
return None, f"Error: {str(e)}", ""
# Boxed Inpainting Functions
def query_gligen(image, prompt, box_x1, box_y1, box_x2, box_y2, object_prompt):
# Simulate the GLIGEN API call
return image # Placeholder for actual implementation
def process_drawn_boxes(image_data, boxes, object_prompt, main_prompt):
try:
image = image_data["composite"] # Use the final edited image
if not boxes or len(boxes) == 0:
return image, "No boxes drawn. Please draw a box."
box = boxes[-1]
height, width = image.size
normalized_box = [box[0] / width, box[1] / height, box[2] / width, box[3] / height]
result_image = query_gligen(
image=image,
prompt=main_prompt,
box_x1=normalized_box[0],
box_y1=normalized_box[1],
box_x2=normalized_box[2],
box_y2=normalized_box[3],
object_prompt=object_prompt,
)
base_filename = get_timestamp_filename()
image_path, _ = save_outputs(result_image, f"GLIGEN: {main_prompt} - Object: {object_prompt}", base_filename)
save_message = f"Image saved as: {image_path}" if image_path else "File not saved locally"
return result_image, save_message
except Exception as e:
return image_data["composite"], f"Error: {str(e)}"
def capture_box_drawing(image, sketch_data, object_prompt, main_prompt):
"""
Handles box drawing based on the freehand sketch.
"""
try:
# Check if the user has drawn anything
if sketch_data is None:
return image, "No box drawn. Please draw a rectangular box."
# Convert the sketch into bounding box coordinates
# Extract non-transparent pixels from the sketch
sketch_np = np.array(sketch_data)
rows, cols = np.where(sketch_np[..., -1] > 0) # Alpha > 0 indicates a drawing
if rows.size == 0 or cols.size == 0:
return image, "No box detected. Ensure you draw a closed box."
# Calculate bounding box
x1, y1, x2, y2 = cols.min(), rows.min(), cols.max(), rows.max()
# Process the image with the drawn bounding box
result_image = query_gligen(
image=image,
prompt=main_prompt,
box_x1=x1 / image.width,
box_y1=y1 / image.height,
box_x2=x2 / image.width,
box_y2=y2 / image.height,
object_prompt=object_prompt,
)
# Save and return
base_filename = get_timestamp_filename()
image_path, _ = save_outputs(result_image, f"Boxed Inpainting: {main_prompt}", base_filename)
save_message = f"Image saved as: {image_path}" if image_path else "File not saved locally"
return result_image, save_message
except Exception as e:
return image, f"Error: {str(e)}"
# Interface
with gr.Blocks() as demo:
with gr.Tabs():
with gr.Tab("Character Creator"):
gr.Markdown("### Generate Characters")
with gr.Row():
char_concept = gr.Textbox(label="Character Concept")
generate_desc = gr.Checkbox(label="Generate Description", value=True)
negative_prompt = gr.Textbox(label="Negative Prompt", value="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy,extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation,clothing, cloths ,pants, under pants, top, covered skin, underwear,gear, cloth, belt, cartoon, missing vagina,small vagina, small breasts, small nipples")
with gr.Row():
steps = gr.Slider(1, 50, value=20, step=1,label="Steps")
guidance = gr.Slider(1, 20, value=7, step=1,label="Guidance")
max_desc_len = gr.Number(value=1024, label="Max Description Length")
lora_repo = gr.Textbox(label="Lora Repo ID")
char_image = gr.Image(label="Generated Character")
char_desc = gr.Textbox(label="Generated Description")
save_info = gr.Textbox(label="Save Info")
gen_btn = gr.Button("Generate")
gen_btn.click(
generate_character,
inputs=[char_concept, generate_desc, negative_prompt, steps, guidance, max_desc_len, lora_repo],
outputs=[char_image, char_desc, save_info],
)
with gr.Tab("Boxed Inpainting"):
gr.Markdown("### Boxed Inpainting Tool")
image_input = gr.ImageEditor(label="Edit and Draw", type="numpy", crop_size=None)
boxes_input = gr.HighlightedText(label="Draw Boxes")
object_prompt = gr.Textbox(label="Object Prompt")
main_prompt = gr.Textbox(label="Main Prompt")
inp_image = gr.Image(label="Processed Image")
inp_save_info = gr.Textbox(label="Save Info")
inp_btn = gr.Button("Process")
inp_btn.click(
process_drawn_boxes,
inputs=[image_input, boxes_input, object_prompt, main_prompt],
outputs=[inp_image, inp_save_info],
)
if __name__ == "__main__":
demo.launch()