Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import os | |
import json | |
# Initialize Hugging Face Inference Client | |
api_key = os.getenv("HF_TOKEN") | |
client = InferenceClient(api_key=api_key) | |
# Load or initialize system prompts | |
PROMPTS_FILE = "system_prompts.json" | |
if os.path.exists(PROMPTS_FILE): | |
with open(PROMPTS_FILE, "r") as file: | |
system_prompts = json.load(file) | |
else: | |
system_prompts = {"default": "You are a good image generation prompt engineer for diffuser image generation models"} | |
def save_prompts(): | |
"""Save the current system prompts to a JSON file.""" | |
with open(PROMPTS_FILE, "w") as file: | |
json.dump(system_prompts, file, indent=4) | |
def chat_with_model(user_input, system_prompt): | |
"""Send user input to the model and return its response.""" | |
messages = [ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": user_input} | |
] | |
try: | |
result = client.chat.completions.create( | |
model="HuggingFaceH4/zephyr-7b-beta", | |
messages=messages, | |
temperature=0.5, | |
max_tokens=2048, | |
top_p=0.7, | |
stream=False # Stream disabled for simplicity | |
) | |
return result["choices"][0]["message"]["content"] | |
except Exception as e: | |
return f"Error: {str(e)}" | |
def update_prompt(name, content): | |
"""Update or add a new system prompt.""" | |
system_prompts[name] = content | |
save_prompts() | |
return f"System prompt '{name}' saved." | |
def get_prompt(name): | |
"""Retrieve a system prompt by name.""" | |
return system_prompts.get(name, "") | |
# Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## Hugging Face Chatbot with Gradio") | |
with gr.Row(): | |
with gr.Column(): | |
system_prompt_name = gr.Dropdown(choices=list(system_prompts.keys()), label="Select System Prompt") | |
system_prompt_content = gr.TextArea(label="System Prompt", value="", lines=4) | |
save_prompt_button = gr.Button("Save System Prompt") | |
user_input = gr.TextArea(label="Enter your prompt", placeholder="Describe the character or request a detailed description...", lines=4) | |
submit_button = gr.Button("Generate") | |
with gr.Column(): | |
output = gr.TextArea(label="Model Response", interactive=False, lines=10) | |
def load_prompt(name): | |
return get_prompt(name) | |
system_prompt_name.change(load_prompt, inputs=[system_prompt_name], outputs=[system_prompt_content]) | |
save_prompt_button.click(update_prompt, inputs=[system_prompt_name, system_prompt_content], outputs=[]) | |
submit_button.click(chat_with_model, inputs=[user_input, system_prompt_content], outputs=[output]) | |
# Run the app | |
demo.launch() | |