Spaces:
Runtime error
Runtime error
File size: 5,582 Bytes
586d5b2 744af63 99a04ab 744af63 586d5b2 744af63 bc57bff 744af63 99a04ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
import spaces
import gradio as gr
import torch
import transformers
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from llava.conversation import conv_templates
from llava.model.llava_gpt2 import LlavaGpt2ForCausalLM
from llava.train.arguments_dataclass import ModelArguments, DataArguments, TrainingArguments
from llava.train.dataset import tokenizer_image_token
# load model
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32
model_path = 'toshi456/llava-jp-1.3b-v1.1'
model = LlavaGpt2ForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
use_safetensors=True,
torch_dtype=torch_dtype,
device_map=device,
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_path,
model_max_length=1532,
padding_side="right",
use_fast=False,
)
model.eval()
conv_mode = "v1"
@spaces.GPU
def inference_fn(
image,
prompt,
max_len,
temperature,
top_p,
):
# prepare inputs
# image pre-process
image_size = model.get_model().vision_tower.image_processor.size["height"]
if model.get_model().vision_tower.scales is not None:
image_size = model.get_model().vision_tower.image_processor.size["height"] * len(model.get_model().vision_tower.scales)
if device == "cuda":
image_tensor = model.get_model().vision_tower.image_processor(
image,
return_tensors='pt',
size={"height": image_size, "width": image_size}
)['pixel_values'].half().cuda().to(torch_dtype)
else:
image_tensor = model.get_model().vision_tower.image_processor(
image,
return_tensors='pt',
size={"height": image_size, "width": image_size}
)['pixel_values'].to(torch_dtype)
# create prompt
inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(
prompt,
tokenizer,
IMAGE_TOKEN_INDEX,
return_tensors='pt'
).unsqueeze(0)
if device == "cuda":
input_ids = input_ids.to(device)
input_ids = input_ids[:, :-1] # </sep>がinputの最後に入るので削除する
# generate
output_ids = model.generate(
inputs=input_ids,
images=image_tensor,
do_sample= temperature != 0.0,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_len,
use_cache=True,
)
output_ids = [token_id for token_id in output_ids.tolist()[0] if token_id != IMAGE_TOKEN_INDEX]
output = tokenizer.decode(output_ids, skip_special_tokens=True)
target = "システム: "
idx = output.find(target)
output = output[idx+len(target):]
return output
with gr.Blocks() as demo:
gr.Markdown(f"# LLaVA-JP Demo")
with gr.Row():
with gr.Column():
# input_instruction = gr.TextArea(label="instruction", value=DEFAULT_INSTRUCTION)
input_image = gr.Image(type="pil", label="image")
prompt = gr.Textbox(label="prompt (optional)", value="")
with gr.Accordion(label="Configs", open=False):
max_len = gr.Slider(
minimum=10,
maximum=256,
value=128,
step=5,
interactive=True,
label="Max New Tokens",
)
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.1,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.5,
maximum=1.0,
value=0.9,
step=0.1,
interactive=True,
label="Top p",
)
# button
input_button = gr.Button(value="Submit")
with gr.Column():
output = gr.Textbox(label="Output")
inputs = [input_image, prompt, max_len, temperature, top_p]
input_button.click(inference_fn, inputs=inputs, outputs=[output])
prompt.submit(inference_fn, inputs=inputs, outputs=[output])
img2txt_examples = gr.Examples(examples=[
[
"./imgs/sample1.jpg",
"猫は何をしていますか?",
32,
0.0,
0.9,
],
[
"./imgs/sample2.jpg",
"この自動販売機にはどのブランドの飲料が含まれていますか?",
256,
0.0,
0.9,
],
[
"./imgs/sample3.jpg",
"この料理の作り方を教えてください。",
256,
0.0,
0.9,
],
[
"./imgs/sample4.jpg",
"このコンピュータの名前を教えてください。",
256,
0.0,
0.9,
],
[
"./imgs/sample5.jpg",
"これらを使って作ることができる料理を教えてください。",
256,
0.0,
0.9,
],
], inputs=inputs, cache_examples=False)
if __name__ == "__main__":
demo.queue().launch()
|