llava-jp-1.3b-v1.1 / llava /model /llava_gpt_neox.py
toshi456's picture
Upload 14 files
7d0ed79 verified
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from transformers import AutoConfig, AutoModelForCausalLM, \
GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXConfig, PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from llava.model.llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
class LlavaConfig(GPTNeoXConfig):
model_type = "llava-jp"
class LlavaGptNeoxModel(LlavaMetaModel, GPTNeoXModel):
config_class = LlavaConfig
def __init__(self, config: GPTNeoXConfig):
super(LlavaGptNeoxModel, self).__init__(config)
class LlavaGptNeoxForCausalLM(PreTrainedModel, LlavaMetaForCausalLM):
config_class = LlavaConfig
base_model = "gpt_neox"
def __init__(self, config):
super(LlavaGptNeoxForCausalLM, self).__init__(config)
self.model = LlavaGptNeoxModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
if inputs_embeds is None:
(
input_ids,
position_ids,
attention_mask,
past_key_values,
inputs_embeds,
labels
) = self.prepare_inputs_labels_for_multimodal(
input_ids,
position_ids,
attention_mask,
past_key_values,
labels,
images
)
print(inputs_embeds.size())
return super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
images = kwargs.pop("images", None)
_inputs = super().prepare_inputs_for_generation(
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
)
if images is not None:
_inputs['images'] = images
return _inputs
AutoConfig.register("llava-jp", LlavaConfig)
AutoModelForCausalLM.register(LlavaConfig, LlavaGptNeoxForCausalLM)