Spaces:
Runtime error
Runtime error
import math | |
import re | |
import torch | |
import torch.nn as nn | |
class IdentityMap(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, x, *args, **kwargs): | |
return x | |
def config(self): | |
return {"mm_projector_type": 'identity'} | |
class FeatureIRLayer(nn.Module): | |
def __init__(self, in_dim: int, out_dim: int) -> None: | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(in_dim, out_dim), nn.GELU(), nn.Linear(out_dim, out_dim) | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.mlp(x) | |
class TokenDownLayer(nn.Module): | |
def __init__(self, shape) -> None: | |
super().__init__() | |
self.dwn = nn.Sequential( | |
nn.AdaptiveAvgPool2d(shape) | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
b, num_tokens, c = x.shape | |
h = int(math.sqrt(num_tokens)) | |
if h * h == num_tokens: | |
x = x.permute(0, 2, 1).reshape(b, -1, h, h) | |
else: | |
# FIXME サイズによっては失敗する | |
w = int(num_tokens/h) | |
assert w*h == num_tokens | |
x = x.permute(0, 2, 1).reshape(b, -1, w, h) | |
x = self.dwn(x) | |
x = x.flatten(2).transpose(1, 2) | |
return x | |
class PosInjectLayer(nn.Module): | |
# https://github.com/Meituan-AutoML/Twins/blob/main/gvt.py | |
def __init__(self, in_dim: int, out_dim: int, stride: int = 1) -> None: | |
super().__init__() | |
self.peg = nn.Sequential( | |
nn.Conv2d(in_dim, out_dim, 3, stride, 1, bias=True, groups=out_dim) | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
b, num_tokens, c = x.shape | |
h = int(math.sqrt(num_tokens)) | |
assert h * h == num_tokens | |
cnn_feat = x.transpose(1, 2).view(b, c, h, h) | |
x = self.peg(cnn_feat) + cnn_feat | |
x = x.flatten(2).transpose(1, 2) | |
return x | |
class LDPNetV2Projector(nn.Module): | |
# https://github.com/Meituan-AutoML/MobileVLM/blob/main/mobilevlm/model/vision_projector.py | |
def __init__(self, config=None): | |
super().__init__() | |
inc, ouc = config.mm_hidden_size, config.hidden_size | |
self.mlp = FeatureIRLayer(inc, ouc) | |
self.dwn = TokenDownLayer((12, 12)) | |
self.peg = PosInjectLayer(ouc, ouc, stride=1) | |
def forward(self, x): | |
x = self.mlp(x) | |
x = self.dwn(x) | |
x = self.peg(x) | |
return x | |
def get_vision_projector(config, delay_load=False, **kwargs): | |
projector_type = getattr(config, 'mm_projector_type', 'linear') | |
if projector_type == 'linear': | |
return nn.Linear(config.mm_hidden_size, config.hidden_size) | |
elif projector_type == 'identity': | |
return IdentityMap() | |
elif projector_type == 'ldpnetv2': | |
return LDPNetV2Projector(config) | |
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) | |
if mlp_gelu_match: | |
mlp_depth = int(mlp_gelu_match.group(1)) | |
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] | |
for _ in range(1, mlp_depth): | |
modules.append(nn.GELU()) | |
modules.append(nn.Linear(config.hidden_size, config.hidden_size)) | |
return nn.Sequential(*modules) | |
raise ValueError(f'Unknown projector type: {projector_type}') |