|
import gradio as gr
|
|
import asyncio
|
|
from pathlib import Path
|
|
|
|
|
|
loaded_models = {}
|
|
model_info_dict = {}
|
|
|
|
|
|
def list_sub(a, b):
|
|
return [e for e in a if e not in b]
|
|
|
|
|
|
def list_uniq(l):
|
|
return sorted(set(l), key=l.index)
|
|
|
|
|
|
def is_repo_name(s):
|
|
import re
|
|
return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
|
|
|
|
|
|
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30):
|
|
from huggingface_hub import HfApi
|
|
api = HfApi()
|
|
default_tags = ["diffusers"]
|
|
if not sort: sort = "last_modified"
|
|
models = []
|
|
try:
|
|
model_infos = api.list_models(author=author, task="text-to-image", pipeline_tag="text-to-image",
|
|
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit * 5)
|
|
except Exception as e:
|
|
print(f"Error: Failed to list models.")
|
|
print(e)
|
|
return models
|
|
for model in model_infos:
|
|
if not model.private and not model.gated:
|
|
if not_tag and not_tag in model.tags: continue
|
|
models.append(model.id)
|
|
if len(models) == limit: break
|
|
return models
|
|
|
|
|
|
def get_t2i_model_info_dict(repo_id: str):
|
|
from huggingface_hub import HfApi
|
|
api = HfApi()
|
|
info = {"md": "None"}
|
|
try:
|
|
if not is_repo_name(repo_id) or not api.repo_exists(repo_id=repo_id): return info
|
|
model = api.model_info(repo_id=repo_id)
|
|
except Exception as e:
|
|
print(f"Error: Failed to get {repo_id}'s info.")
|
|
print(e)
|
|
return info
|
|
if model.private or model.gated: return info
|
|
try:
|
|
tags = model.tags
|
|
except Exception:
|
|
return info
|
|
if not 'diffusers' in model.tags: return info
|
|
if 'diffusers:StableDiffusionXLPipeline' in tags: info["ver"] = "SDXL"
|
|
elif 'diffusers:StableDiffusionPipeline' in tags: info["ver"] = "SD1.5"
|
|
elif 'diffusers:StableDiffusion3Pipeline' in tags: info["ver"] = "SD3"
|
|
else: info["ver"] = "Other"
|
|
info["url"] = f"https://huggingface.co/{repo_id}/"
|
|
if model.card_data and model.card_data.tags:
|
|
info["tags"] = model.card_data.tags
|
|
info["downloads"] = model.downloads
|
|
info["likes"] = model.likes
|
|
info["last_modified"] = model.last_modified.strftime("lastmod: %Y-%m-%d")
|
|
un_tags = ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']
|
|
descs = [info["ver"]] + list_sub(info["tags"], un_tags) + [f'DLs: {info["downloads"]}'] + [f'❤: {info["likes"]}'] + [info["last_modified"]]
|
|
info["md"] = f'Model Info: {", ".join(descs)} [Model Repo]({info["url"]})'
|
|
return info
|
|
|
|
|
|
def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
|
|
from datetime import datetime, timezone, timedelta
|
|
progress(0, desc="Updating gallery...")
|
|
dt_now = datetime.now(timezone(timedelta(hours=9)))
|
|
basename = dt_now.strftime('%Y%m%d_%H%M%S_')
|
|
i = 1
|
|
if not images: return images
|
|
output_images = []
|
|
output_paths = []
|
|
for image in images:
|
|
filename = f'{image[1]}_{basename}{str(i)}.png'
|
|
i += 1
|
|
oldpath = Path(image[0])
|
|
newpath = oldpath
|
|
try:
|
|
if oldpath.stem == "image" and oldpath.exists():
|
|
newpath = oldpath.resolve().rename(Path(filename).resolve())
|
|
except Exception as e:
|
|
print(e)
|
|
pass
|
|
finally:
|
|
output_paths.append(str(newpath))
|
|
output_images.append((str(newpath), str(filename)))
|
|
progress(1, desc="Gallery updated.")
|
|
return gr.update(value=output_images), gr.update(value=output_paths)
|
|
|
|
|
|
def load_model(model_name: str):
|
|
global loaded_models
|
|
global model_info_dict
|
|
if model_name in loaded_models.keys(): return loaded_models[model_name]
|
|
try:
|
|
loaded_models[model_name] = gr.load(f'models/{model_name}')
|
|
print(f"Loaded: {model_name}")
|
|
except Exception as e:
|
|
if model_name in loaded_models.keys(): del loaded_models[model_name]
|
|
print(f"Failed to load: {model_name}")
|
|
print(e)
|
|
return None
|
|
try:
|
|
model_info_dict[model_name] = get_t2i_model_info_dict(model_name)
|
|
except Exception as e:
|
|
if model_name in model_info_dict.keys(): del model_info_dict[model_name]
|
|
print(e)
|
|
return loaded_models[model_name]
|
|
|
|
|
|
async def async_load_models(models: list, limit: int=5):
|
|
sem = asyncio.Semaphore(limit)
|
|
async def async_load_model(model: str):
|
|
async with sem:
|
|
try:
|
|
return load_model(model)
|
|
except Exception as e:
|
|
print(e)
|
|
tasks = [asyncio.create_task(async_load_model(model)) for model in models]
|
|
return await asyncio.wait(tasks)
|
|
|
|
|
|
def load_models(models: list, limit: int=5):
|
|
loop = asyncio.get_event_loop()
|
|
try:
|
|
loop.run_until_complete(async_load_models(models, limit))
|
|
except Exception as e:
|
|
print(e)
|
|
pass
|
|
loop.close()
|
|
|
|
|
|
def get_model_info_md(model_name: str):
|
|
if model_name in model_info_dict.keys(): return model_info_dict[model_name].get("md", "")
|
|
|
|
|
|
def change_model(model_name: str):
|
|
load_model(model_name)
|
|
return get_model_info_md(model_name)
|
|
|
|
|
|
def infer(prompt: str, model_name: str, recom_prompt: bool, progress=gr.Progress(track_tqdm=True)):
|
|
from PIL import Image
|
|
import random
|
|
seed = ""
|
|
rand = random.randint(1, 500)
|
|
for i in range(rand):
|
|
seed += " "
|
|
rprompt = ", highly detailed, masterpiece, best quality, very aesthetic, absurdres, " if recom_prompt else ""
|
|
caption = model_name.split("/")[-1]
|
|
try:
|
|
model = load_model(model_name)
|
|
if not model: return (Image.Image(), None)
|
|
image_path = model(prompt + rprompt + seed)
|
|
image = Image.open(image_path).convert('RGB')
|
|
except Exception as e:
|
|
print(e)
|
|
return (Image.Image(), None)
|
|
return (image, caption)
|
|
|
|
|
|
def infer_multi(prompt: str, model_name: str, recom_prompt: bool, image_num: float, results: list, progress=gr.Progress(track_tqdm=True)):
|
|
image_num = int(image_num)
|
|
images = results if results else []
|
|
for i in range(image_num):
|
|
images.append(infer(prompt, model_name, recom_prompt))
|
|
yield images
|
|
|