John6666 commited on
Commit
56746e0
·
verified ·
1 Parent(s): 375b410

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +7 -5
  2. multit2i.py +27 -14
app.py CHANGED
@@ -48,7 +48,9 @@ load_models(models, 10)
48
  #load_models(models, 20) # Fetching 20 models at the same time. default: 5
49
 
50
 
51
- css = """"""
 
 
52
 
53
  with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", css=css) as demo:
54
  with gr.Column():
@@ -61,13 +63,13 @@ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", css=css) as demo:
61
  negative_suffix = gr.CheckboxGroup(label="Use Negative Suffix", choices=get_negative_suffix(), value=["Common"], visible=False)
62
  with gr.Group():
63
  model_name = gr.Dropdown(label="Select Model", choices=list(loaded_models.keys()), value=list(loaded_models.keys())[0])
64
- model_info = gr.Markdown(value=get_model_info_md(list(loaded_models.keys())[0]))
65
  prompt = gr.Text(label="Prompt", lines=1, max_lines=8, placeholder="1girl, solo, ...")
66
  neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="", visible=False)
67
  with gr.Row():
68
- run_button = gr.Button("Generate Image", scale=2)
69
- random_button = gr.Button("Random Model 🎲", scale=1)
70
- image_num = gr.Number(label="Number of images", minimum=1, maximum=16, value=1, step=1, interactive=True, scale=1)
71
  results = gr.Gallery(label="Gallery", interactive=False, show_download_button=True, show_share_button=False,
72
  container=True, format="png", object_fit="contain")
73
  image_files = gr.Files(label="Download", interactive=False)
 
48
  #load_models(models, 20) # Fetching 20 models at the same time. default: 5
49
 
50
 
51
+ css = """
52
+ #model_info { text-align: center; display:block; }
53
+ """
54
 
55
  with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", css=css) as demo:
56
  with gr.Column():
 
63
  negative_suffix = gr.CheckboxGroup(label="Use Negative Suffix", choices=get_negative_suffix(), value=["Common"], visible=False)
64
  with gr.Group():
65
  model_name = gr.Dropdown(label="Select Model", choices=list(loaded_models.keys()), value=list(loaded_models.keys())[0])
66
+ model_info = gr.Markdown(value=get_model_info_md(list(loaded_models.keys())[0]), elem_id="model_info")
67
  prompt = gr.Text(label="Prompt", lines=1, max_lines=8, placeholder="1girl, solo, ...")
68
  neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="", visible=False)
69
  with gr.Row():
70
+ run_button = gr.Button("Generate Image", scale=6)
71
+ random_button = gr.Button("Random Model 🎲", scale=3)
72
+ image_num = gr.Number(label="Count", minimum=1, maximum=16, value=1, step=1, interactive=True, scale=1)
73
  results = gr.Gallery(label="Gallery", interactive=False, show_download_button=True, show_share_button=False,
74
  container=True, format="png", object_fit="contain")
75
  image_files = gr.Files(label="Download", interactive=False)
multit2i.py CHANGED
@@ -1,8 +1,10 @@
1
  import gradio as gr
2
  import asyncio
 
3
  from pathlib import Path
4
 
5
 
 
6
  loaded_models = {}
7
  model_info_dict = {}
8
 
@@ -59,7 +61,8 @@ def get_t2i_model_info_dict(repo_id: str):
59
  if model.private or model.gated: return info
60
  try:
61
  tags = model.tags
62
- except Exception:
 
63
  return info
64
  if not 'diffusers' in model.tags: return info
65
  if 'diffusers:StableDiffusionXLPipeline' in tags: info["ver"] = "SDXL"
@@ -74,7 +77,7 @@ def get_t2i_model_info_dict(repo_id: str):
74
  info["last_modified"] = model.last_modified.strftime("lastmod: %Y-%m-%d")
75
  un_tags = ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']
76
  descs = [info["ver"]] + list_sub(info["tags"], un_tags) + [f'DLs: {info["downloads"]}'] + [f'❤: {info["likes"]}'] + [info["last_modified"]]
77
- info["md"] = f'    Model Info: {", ".join(descs)} [Model Repo]({info["url"]})'
78
  return info
79
 
80
 
@@ -110,32 +113,35 @@ def load_model(model_name: str):
110
  global model_info_dict
111
  if model_name in loaded_models.keys(): return loaded_models[model_name]
112
  try:
113
- loaded_models[model_name] = gr.load(f'models/{model_name}')
 
114
  print(f"Loaded: {model_name}")
115
  except Exception as e:
116
- if model_name in loaded_models.keys(): del loaded_models[model_name]
 
117
  print(f"Failed to load: {model_name}")
118
  print(e)
119
  return None
120
  try:
121
- model_info_dict[model_name] = get_t2i_model_info_dict(model_name)
 
122
  except Exception as e:
123
- if model_name in model_info_dict.keys(): del model_info_dict[model_name]
 
124
  print(e)
125
  return loaded_models[model_name]
126
 
127
 
128
- async def async_load_models(models: list, limit: int=5):
129
- from tqdm.asyncio import tqdm_asyncio
130
  sem = asyncio.Semaphore(limit)
131
  async def async_load_model(model: str):
132
  async with sem:
133
  try:
134
- return load_model(model)
135
  except Exception as e:
136
  print(e)
137
  tasks = [asyncio.create_task(async_load_model(model)) for model in models]
138
- return await tqdm_asyncio.gather(*tasks)
139
 
140
 
141
  def load_models(models: list, limit: int=5):
@@ -271,20 +277,23 @@ def infer(prompt: str, neg_prompt: str, model_name: str):
271
 
272
  async def infer_multi(prompt: str, neg_prompt: str, results: list, image_num: float, model_name: str,
273
  pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], progress=gr.Progress(track_tqdm=True)):
274
- import asyncio
275
  image_num = int(image_num)
276
  images = results if results else []
277
  prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
278
  tasks = [asyncio.to_thread(infer, prompt, neg_prompt, model_name) for i in range(image_num)]
279
  results = await asyncio.gather(*tasks, return_exceptions=True)
 
 
280
  for result in results:
281
- images.append(result)
 
282
  yield images
283
 
284
 
285
  async def infer_multi_random(prompt: str, neg_prompt: str, results: list, image_num: float,
286
  pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], progress=gr.Progress(track_tqdm=True)):
287
- import asyncio
288
  import random
289
  image_num = int(image_num)
290
  images = results if results else []
@@ -293,6 +302,10 @@ async def infer_multi_random(prompt: str, neg_prompt: str, results: list, image_
293
  prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
294
  tasks = [asyncio.to_thread(infer, prompt, neg_prompt, model_name) for model_name in model_names]
295
  results = await asyncio.gather(*tasks, return_exceptions=True)
 
 
296
  for result in results:
297
- images.append(result)
 
298
  yield images
 
 
1
  import gradio as gr
2
  import asyncio
3
+ from threading import RLock, Thread
4
  from pathlib import Path
5
 
6
 
7
+ lock = RLock()
8
  loaded_models = {}
9
  model_info_dict = {}
10
 
 
61
  if model.private or model.gated: return info
62
  try:
63
  tags = model.tags
64
+ except Exception as e:
65
+ print(e)
66
  return info
67
  if not 'diffusers' in model.tags: return info
68
  if 'diffusers:StableDiffusionXLPipeline' in tags: info["ver"] = "SDXL"
 
77
  info["last_modified"] = model.last_modified.strftime("lastmod: %Y-%m-%d")
78
  un_tags = ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']
79
  descs = [info["ver"]] + list_sub(info["tags"], un_tags) + [f'DLs: {info["downloads"]}'] + [f'❤: {info["likes"]}'] + [info["last_modified"]]
80
+ info["md"] = f'Model Info: {", ".join(descs)} [Model Repo]({info["url"]})'
81
  return info
82
 
83
 
 
113
  global model_info_dict
114
  if model_name in loaded_models.keys(): return loaded_models[model_name]
115
  try:
116
+ with lock:
117
+ loaded_models[model_name] = gr.load(f'models/{model_name}')
118
  print(f"Loaded: {model_name}")
119
  except Exception as e:
120
+ with lock:
121
+ if model_name in loaded_models.keys(): del loaded_models[model_name]
122
  print(f"Failed to load: {model_name}")
123
  print(e)
124
  return None
125
  try:
126
+ with lock:
127
+ model_info_dict[model_name] = get_t2i_model_info_dict(model_name)
128
  except Exception as e:
129
+ with lock:
130
+ if model_name in model_info_dict.keys(): del model_info_dict[model_name]
131
  print(e)
132
  return loaded_models[model_name]
133
 
134
 
135
+ async def async_load_models(models: list, limit: int=5, wait=10):
 
136
  sem = asyncio.Semaphore(limit)
137
  async def async_load_model(model: str):
138
  async with sem:
139
  try:
140
+ return await asyncio.to_thread(load_model, model)
141
  except Exception as e:
142
  print(e)
143
  tasks = [asyncio.create_task(async_load_model(model)) for model in models]
144
+ return await asyncio.gather(*tasks, return_exceptions=True)
145
 
146
 
147
  def load_models(models: list, limit: int=5):
 
277
 
278
  async def infer_multi(prompt: str, neg_prompt: str, results: list, image_num: float, model_name: str,
279
  pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], progress=gr.Progress(track_tqdm=True)):
280
+ #from tqdm.asyncio import tqdm_asyncio
281
  image_num = int(image_num)
282
  images = results if results else []
283
  prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
284
  tasks = [asyncio.to_thread(infer, prompt, neg_prompt, model_name) for i in range(image_num)]
285
  results = await asyncio.gather(*tasks, return_exceptions=True)
286
+ #results = await tqdm_asyncio.gather(*tasks)
287
+ if not results: results = []
288
  for result in results:
289
+ with lock:
290
+ if result and result[1]: images.append(result)
291
  yield images
292
 
293
 
294
  async def infer_multi_random(prompt: str, neg_prompt: str, results: list, image_num: float,
295
  pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], progress=gr.Progress(track_tqdm=True)):
296
+ #from tqdm.asyncio import tqdm_asyncio
297
  import random
298
  image_num = int(image_num)
299
  images = results if results else []
 
302
  prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
303
  tasks = [asyncio.to_thread(infer, prompt, neg_prompt, model_name) for model_name in model_names]
304
  results = await asyncio.gather(*tasks, return_exceptions=True)
305
+ #await tqdm_asyncio.gather(*tasks)
306
+ if not results: results = []
307
  for result in results:
308
+ with lock:
309
+ if result and result[1]: images.append(result)
310
  yield images
311
+