Spaces:
Sleeping
Sleeping
import gradio as gr | |
from fastai.vision.all import * | |
from fastcore.all import * | |
learn = load_learner("model_cow.pkl") | |
categories = ('Angus', 'Brown Swiss', 'Charolais', 'Hereford', 'Holstein', 'Jersey', 'Limousin', 'Simmental') | |
def classify_img(img): | |
pred,idx,probs = learn.predict(img) | |
return dict(zip(categories, map(float,probs))) | |
with gr.Blocks(title = " what kind of cow ") as demo: | |
with gr.Row(): | |
gr.Markdown(""" | |
### what kind of cow ? | |
#### click on the photos and then click "PREDİCT" button. | |
""") | |
with gr.Row(): | |
image = gr.inputs.Image(shape=(192,192)) | |
with gr.Row(): | |
output = gr.outputs.Label() | |
with gr.Row(): | |
image_button = gr.Button("PREDİCT") | |
image_button.click(classify_img, inputs=image, outputs=output) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Examples(inputs=image,examples=["1.jpg"],label="angus") | |
with gr.Column(): | |
gr.Examples(inputs=image,examples=["2.jpg"],label="jersey") | |
with gr.Column(): | |
gr.Examples(inputs=image,examples=["3.jpg"],label="simmental") | |
with gr.Column(): | |
gr.Examples(inputs=image,examples=["7.jpg"],label="jersey") | |
with gr.Column(): | |
gr.Examples(inputs=image,examples=["5.jpg"],label="Angus") | |
with gr.Column(): | |
gr.Examples(inputs=image,examples=["6.jpg"],label="brown swiss") | |
with gr.Column(): | |
gr.Examples(inputs=image,examples=["4.jpg"],label="simmental") | |
demo.launch() |