import gradio as gr import cv2 from ultralytics import YOLO def object_detection(): model=YOLO("/home/kahraman/Masaüstü/HuggingFace_Models_and_Spaces/yolov8_model_on_custom_data/best.pt") source="/home/kahraman/Masaüstü/HuggingFace_Models_and_Spaces/yolov8_model_on_custom_data/cow-video-cows-mooing-and-grazing-in-a-field.mp4" cap = cv2.VideoCapture(source) while True: ret, frame = cap.read() if not ret: break results = model(frame) for result in results: box=result.boxes x1, y1, x2, y2 = map(int, box.xyxy[0]) print(x1, y1, x2, y2) cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.imshow("img", frame) if cv2.waitKey(1) & 0xFF == ord("q"): break cap.release() cv2.destroyAllWindows() iface = gr.Interface( fn=object_detection, inputs="text", outputs="text", layout="vertical", title="Sığır Object Detection", description="Bir sığır videosu bırakın ve videoda ki sığırların yakalayın." ) iface.launch(share=True)