Spaces:
Sleeping
Sleeping
File size: 9,199 Bytes
801501a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import sys
from pathlib import Path
from typing import Union
import h5py
import numpy as np
import open3d as o3d
import torch
from rich.progress import track
from salad.utils.paths import SPAGHETTI_DIR
from salad.utils import nputil, thutil, sysutil, meshutil
# TODO rewrite SPAGHETTI's relative path dependecies.
# Too lazy to refactorize SPAGHETTI's relative paths..
def add_spaghetti_path(spaghetti_path=SPAGHETTI_DIR):
spaghetti_path = str(spaghetti_path)
if spaghetti_path not in sys.path:
sys.path.append(spaghetti_path)
def delete_spaghetti_path(
spaghetti_path=SPAGHETTI_DIR,
):
spaghetti_path = str(spaghetti_path)
if spaghetti_path in sys.path:
sys.path.remove(spaghetti_path)
def load_spaghetti(device, tag="chairs_large"):
assert tag in [
"chairs_large",
"airplanes",
"tables",
], f"tag should be 'chairs_large', 'airplanes' or 'tables'."
add_spaghetti_path()
from salad.spaghetti.options import Options
from salad.spaghetti.ui import occ_inference
opt = Options()
opt.dataset_size = 1
opt.device = device
opt.tag = tag
infer_module = occ_inference.Inference(opt)
spaghetti = infer_module.model.to(device)
spaghetti.eval()
for p in spaghetti.parameters():
p.requires_grad_(False)
delete_spaghetti_path()
return spaghetti
def load_mesher(
device,
min_res=64,
):
from salad.spaghetti.utils.mcubes_meshing import MarchingCubesMeshing
mesher = MarchingCubesMeshing(device=device, min_res=min_res)
delete_spaghetti_path()
return mesher
def get_mesh_and_pc(spaghetti, mesher, zc):
vert, face = get_mesh_from_spaghetti(spaghetti, mesher, zc)
pc = poisson_sampling(vert, face)
return vert, face, pc
def get_mesh_from_spaghetti(spaghetti, mesher, zc, res=256):
mesh = mesher.occ_meshing(
decoder=get_occ_func(spaghetti, zc), res=res, get_time=False, verbose=False
)
vert, face = list(map(lambda x: thutil.th2np(x), mesh))
return vert, face
def poisson_sampling(vert: np.array, face: np.array):
vert_o3d = o3d.utility.Vector3dVector(vert)
face_o3d = o3d.utility.Vector3iVector(face)
mesh_o3d = o3d.geometry.TriangleMesh(vert_o3d, face_o3d)
pc_o3d = mesh_o3d.sample_points_poisson_disk(2048)
pc = np.asarray(pc_o3d.points).astype(np.float32)
return pc
def get_occ_func(spaghetti, zc):
device = spaghetti.device
zc = nputil.np2th(zc).to(device)
def forward(x):
nonlocal zc
x = x.unsqueeze(0)
out = spaghetti.occupancy_network(x, zc)[0, :]
out = 2 * out.sigmoid_() - 1
return out
if zc.dim() == 2:
zc = zc.unsqueeze(0)
return forward
def generate_zc_from_sj_gaus(
spaghetti,
sj: Union[torch.Tensor, np.ndarray],
gaus: Union[torch.Tensor, np.ndarray],
):
"""
Input:
sj: [B,16,512] or [16,512]
gaus: [B,16,16] or [16,16]
Output:
zc: [B,16,512]
"""
device = spaghetti.device
sj = nputil.np2th(sj)
gaus = nputil.np2th(gaus)
assert sj.dim() == gaus.dim()
if sj.dim() == 2:
sj = sj.unsqueeze(0)
batch_sj = sj.to(device)
batch_gmms = batch_gaus_to_gmms(gaus, device)
zcs, _ = spaghetti.merge_zh(batch_sj, batch_gmms)
return zcs
def generate_zc_from_za(spaghetti, za: Union[torch.Tensor, np.ndarray]):
device = spaghetti.device
za = nputil.np2th(za).to(device)
sjs, gmms = spaghetti.decomposition_control(za)
zcs, _ = spaghetti.merge_zh(sjs, gmms)
return zcs
def generate_gaus_from_za(spaghetti, za):
# device = spaghetti.device
# za = nputil.np2th(za).to(device)
sjs, gmms = spaghetti.decomposition_control(za)
if isinstance(gmms[0], list):
gaus = gmms[0]
else:
gaus = list(gmms)
gaus = [flatten_gmms_item(x) for x in gaus]
gaus = torch.cat(gaus, -1)
# gaus = batch_gmms_to_gaus(gmms)
return gaus
def generate_zc_from_single_phase_latent(
spaghetti, sj_gaus: Union[torch.Tensor, np.ndarray]
):
device = spaghetti.device
sj_gaus = nputil.np2th(sj_gaus).to(device)
sj, gaus = sj_gaus.split(split_size=[512, 16], dim=-1)
zcs = generate_zc_from_sj_gaus(spaghetti, sj, gaus)
return zcs
def flatten_gmms_item(x):
"""
Input: [B,1,G,*shapes]
Output: [B,G,-1]
"""
return x.reshape(x.shape[0], x.shape[2], -1)
@torch.no_grad()
def batch_gmms_to_gaus(gmms):
"""
Input:
[T(B,1,G,3), T(B,1,G,3,3), T(B,1,G), T(B,1,G,3)]
Output:
T(B,G,16)
"""
if isinstance(gmms[0], list):
gaus = gmms[0].copy()
else:
gaus = list(gmms).copy()
gaus = [flatten_gmms_item(x) for x in gaus]
return torch.cat(gaus, -1)
@torch.no_grad()
def batch_gaus_to_gmms(gaus, device="cpu"):
"""
Input: T(B,G,16)
Output: [mu: T(B,1,G,3), eivec: T(B,1,G,3,3), pi: T(B,1,G), eival: T(B,1,G,3)]
"""
gaus = nputil.np2th(gaus).to(device)
if len(gaus.shape) < 3:
gaus = gaus.unsqueeze(0) # expand dim for batch
B, G, _ = gaus.shape
mu = gaus[:, :, :3].reshape(B, 1, G, 3)
eivec = gaus[:, :, 3:12].reshape(B, 1, G, 3, 3)
pi = gaus[:, :, 12].reshape(B, 1, G)
eival = gaus[:, :, 13:16].reshape(B, 1, G, 3)
return [mu, eivec, pi, eival]
def reflect_and_concat_gmms(gmms: torch.Tensor):
"""
Input:
gmms: (B, 8, 16). A batch of GMMs
Output:
new_gmms: (B, 16, 16)
"""
gmms = nputil.np2th(gmms)
gmms = gmms.clone()
if gmms.dim() == 2:
gmms = gmms.unsqueeze(0)
affine = torch.eye(3).to(gmms)
affine[0, 0] = -1.0
mu, p, phi, eigen = torch.split(gmms, [3, 9, 1, 3], dim=2)
if affine.ndim == 2:
affine = affine.unsqueeze(0).expand(mu.size(0), *affine.shape)
bs, n_part, _ = mu.shape
p = p.reshape(bs, n_part, 3, 3)
mu_r = torch.einsum("bad, bnd -> bna", affine, mu)
p_r = torch.einsum("bad, bncd -> bnca", affine, p)
p_r = p_r.reshape(bs, n_part, -1)
gmms_t = torch.cat([mu_r, p_r, phi, eigen], dim=2)
assert (
gmms.shape == gmms_t.shape
), "Input and reflected gmms shapes must be the same"
return torch.cat([gmms, gmms_t], dim=1)
def clip_eigenvalues(gaus: Union[torch.Tensor, np.ndarray], eps=1e-4):
"""
Input:
gaus: [B,G,16] or [G,16]
Output:
gaus_clipped: [B,G,16] or [G,16] torch.Tensor
"""
gaus = nputil.np2th(gaus)
clipped_gaus = gaus.clone()
clipped_gaus[..., 13:16] = torch.clamp_min(clipped_gaus[..., 13:16], eps)
return clipped_gaus
def project_eigenvectors(gaus: Union[torch.Tensor, np.ndarray]):
"""
Input:
gaus: [B,G,16] or [G,16]
Output:
gaus_projected: [B,G,16] or [1,G,16]
"""
gaus = nputil.np2th(gaus).clone()
if gaus.ndim == 2:
gaus = gaus.unsqueeze(0)
B, G = gaus.shape[:2]
eigvec = gaus[:, :, 3:12]
eigvec_projected = get_orthonormal_bases_svd(eigvec)
gaus[:, :, 3:12] = eigvec_projected
return gaus
def get_orthonormal_bases_svd(vs: torch.Tensor):
"""
Implements the solution for the Orthogonal Procrustes problem,
which projects a matrix to the closest rotation matrix / reflection matrix using SVD.
Args:
vs: Tensor of shape (B, M, 9)
Returns:
p: Tensor of shape (B, M, 9).
"""
# Compute SVDs of matrices in batch
b, m, _ = vs.shape
vs_ = vs.reshape(b * m, 3, 3)
U, _, Vh = torch.linalg.svd(vs_)
# Determine the diagonal matrix to make determinants 1
sigma = torch.eye(3)[None, ...].repeat(b * m, 1, 1).to(vs_.device)
det = torch.linalg.det(torch.bmm(U, Vh)) # Compute determinants of UVT
####
# Do not set the sign of determinants to 1.
# Inputs contain reflection matrices.
# sigma[:, 2, 2] = det
####
# Construct orthogonal matrices
p = torch.bmm(torch.bmm(U, sigma), Vh)
return p.reshape(b, m, 9)
def save_meshes_and_pointclouds(
spaghetti,
mesher,
zcs,
save_top_dir,
mesh_save_dir=None,
pc_save_dir=None,
num_shapes=2000,
):
save_top_dir = Path(save_top_dir)
print(f"Save dir is: {save_top_dir}")
if mesh_save_dir is None:
mesh_save_dir = save_top_dir / "meshes"
mesh_save_dir.mkdir(exist_ok=True)
if pc_save_dir is None:
pc_save_dir = save_top_dir / "pointclouds"
pc_save_dir.mkdir(exist_ok=True)
mesh_save_dir = Path(mesh_save_dir)
pc_save_dir = Path(pc_save_dir)
all_pointclouds = np.zeros((num_shapes, 2048, 3))
for i in track(range(num_shapes), description="extracting pc and mesh"):
zc = zcs[i]
vert_np, face_np, pc_np = get_mesh_and_pc(spaghetti, mesher, zc)
sysutil.clean_gpu()
all_pointclouds[i] = pc_np
meshutil.write_obj_triangle(mesh_save_dir / f"{i}.obj", vert_np, face_np)
np.save(pc_save_dir / f"{i}.npy", pc_np)
if i == 1000:
with h5py.File(save_top_dir / "o3d_all_pointclouds.hdf5", "w") as f:
f["data"] = all_pointclouds[:1000]
with h5py.File(save_top_dir / "o3d_all_pointclouds.hdf5", "w") as f:
f["data"] = all_pointclouds
|