Spaces:
Sleeping
Sleeping
File size: 11,413 Bytes
801501a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
from ..options import Options
from . import models_utils, transformer
from .. import constants
from ..custom_types import *
from torch import distributions
import math
from ..utils import files_utils
def dot(x, y, dim=3):
return torch.sum(x * y, dim=dim)
def remove_projection(v_1, v_2):
proj = (dot(v_1, v_2) / dot(v_2, v_2))
return v_1 - proj[:, :, :, None] * v_2
def get_p_direct(splitted: TS) -> T:
raw_base = []
for i in range(constants.DIM):
u = splitted[i]
for j in range(i):
u = remove_projection(u, raw_base[j])
raw_base.append(u)
p = torch.stack(raw_base, dim=3)
p = p / torch.norm(p, p=2, dim=4)[:, :, :, :, None] # + self.noise[None, None, :, :]
return p
def split_gm(splitted: TS) -> TS:
p = get_p_direct(splitted)
# eigenvalues
eigen = splitted[-3] ** 2 + constants.EPSILON
mu = splitted[-2]
phi = splitted[-1].squeeze(3)
return mu, p, phi, eigen
class DecompositionNetwork(nn.Module):
def forward_bottom(self, x):
return self.l1(x).view(-1, self.bottom_width, self.embed_dim)
def forward_upper(self, x):
return self.to_zb(x)
def forward(self, x):
x = self.forward_bottom(x)
x = self.forward_upper(x)
return x
def __init__(self, opt: Options, act=nnf.relu, norm_layer: nn.Module = nn.LayerNorm):
super(DecompositionNetwork, self).__init__()
self.bottom_width = opt.num_gaussians
self.embed_dim = opt.dim_h
self.l1 = nn.Linear(opt.dim_z, self.bottom_width * opt.dim_h)
if opt.decomposition_network == 'mlp':
self.to_zb = models_utils.MLP((opt.dim_h, *([2 * opt.dim_h] * opt.decomposition_num_layers), opt.dim_h))
else:
self.to_zb = transformer.Transformer(opt.dim_h, opt.num_heads, opt.num_layers, act=act,
norm_layer=norm_layer)
class OccupancyMlP(nn.Module):
## base on DeepSDF https://github.com/facebookresearch/DeepSDF
def forward(self, x, z):
x_ = x = torch.cat((x, z), dim=-1)
for i, layer in enumerate(self.layers):
if layer == self.latent_in:
x = torch.cat([x, x_], 2)
x = layer(x)
if i < len(self.layers) - 2:
x = self.relu(x)
# x = self.dropout(self.relu(x))
# files_utils.save_pickle(x.detach().cpu(), f"/home/amirh/projects/spaghetti_private/assets/debug/out_{i}")
return x
def __init__(self, opt: Options):
super(OccupancyMlP, self).__init__()
dim_in = 2 * (opt.pos_dim + constants.DIM)
dims = [dim_in] + opt.head_occ_size * [dim_in] + [1]
self.latent_in = opt.head_occ_size // 2 + opt.head_occ_size % 2
dims[self.latent_in] += dims[0]
self.dropout = nn.Dropout(.2)
self.relu = nn.ReLU(True)
layers = []
for i in range(0, len(dims) - 1):
layers.append(nn.utils.weight_norm(nn.Linear(dims[i], dims[i + 1])))
self.layers = nn.ModuleList(layers)
class OccupancyNetwork(nn.Module):
def get_pos(self, coords: T):
pos = self.pos_encoder(coords)
pos = torch.cat((coords, pos), dim=2)
return pos
def forward_attention(self, coords: T, zh: T, mask: Optional[T] = None, alpha: TN = None) -> TS:
pos = self.get_pos(coords)
_, attn = self.occ_transformer.forward_with_attention(pos, zh, mask, alpha)
return attn
def forward(self, coords: T, zh: T, mask: TN = None, alpha: TN = None) -> T:
pos = self.get_pos(coords)
x = self.occ_transformer(pos, zh, mask, alpha)
out = self.occ_mlp(pos, x)
if out.shape[-1] == 1:
out = out.squeeze(-1)
return out
def __init__(self, opt: Options):
super(OccupancyNetwork, self).__init__()
self.pos_encoder = models_utils.SineLayer(constants.DIM, opt.pos_dim, is_first=True)
if hasattr(opt, 'head_occ_type') and opt.head_occ_type == 'skip':
self.occ_mlp = OccupancyMlP(opt)
else:
self.occ_mlp = models_utils.MLP([(opt.pos_dim + constants.DIM)] +
[opt.dim_h] * opt.head_occ_size + [1])
self.occ_transformer = transformer.Transformer(opt.pos_dim + constants.DIM,
opt.num_heads_head, opt.num_layers_head,
dim_ref=opt.dim_h)
class DecompositionControl(models_utils.Model):
def forward_bottom(self, x):
z_bottom = self.decomposition.forward_bottom(x)
return z_bottom
def forward_upper(self, x):
x = self.decomposition.forward_upper(x)
return x
def forward_split(self, x: T) -> Tuple[T, TS]:
b = x.shape[0]
raw_gmm = self.to_gmm(x).unsqueeze(1)
gmms = split_gm(torch.split(raw_gmm, self.split_shape, dim=3))
zh = self.to_s(x)
zh = zh.view(b, -1, zh.shape[-1])
return zh, gmms
@staticmethod
def apply_gmm_affine(gmms: TS, affine: T):
mu, p, phi, eigen = gmms
if affine.dim() == 2:
affine = affine.unsqueeze(0).expand(mu.shape[0], *affine.shape)
mu_r = torch.einsum('bad, bpnd->bpna', affine, mu)
p_r = torch.einsum('bad, bpncd->bpnca', affine, p)
return mu_r, p_r, phi, eigen
@staticmethod
def concat_gmm(gmm_a: TS, gmm_b: TS):
out = []
num_gaussians = gmm_a[0].shape[2] // 2
for element_a, element_b in zip(gmm_a, gmm_b):
out.append(torch.cat((element_a[:, :, :num_gaussians], element_b[:, :, :num_gaussians]), dim=2))
return out
def forward_mid(self, zs) -> Tuple[T, TS]:
zh, gmms = self.forward_split(zs)
if self.reflect is not None:
gmms_r = self.apply_gmm_affine(gmms, self.reflect)
gmms = self.concat_gmm(gmms, gmms_r)
return zh, gmms
def forward_low(self, z_init):
zs = self.decomposition(z_init)
return zs
def forward(self, z_init) -> Tuple[T, TS]:
zs = self.forward_low(z_init)
zh, gmms = self.forward_mid(zs)
return zh, gmms
@staticmethod
def get_reflection(reflect_axes: Tuple[bool, ...]):
reflect = torch.eye(constants.DIM)
for i in range(constants.DIM):
if reflect_axes[i]:
reflect[i, i] = -1
return reflect
def __init__(self, opt: Options):
super(DecompositionControl, self).__init__()
if sum(opt.symmetric) > 0:
reflect = self.get_reflection(opt.symmetric)
self.register_buffer("reflect", reflect)
else:
self.reflect = None
self.split_shape = tuple((constants.DIM + 2) * [constants.DIM] + [1])
self.decomposition = DecompositionNetwork(opt)
self.to_gmm = nn.Linear(opt.dim_h, sum(self.split_shape))
self.to_s = nn.Linear(opt.dim_h, opt.dim_h)
class Spaghetti(models_utils.Model):
def get_z(self, item: T):
return self.z(item)
@staticmethod
def interpolate_(z, num_between: Optional[int] = None):
if num_between is None:
num_between = z.shape[0]
alphas = torch.linspace(0, 1, num_between, device=z.device)
while alphas.dim() != z.dim():
alphas.unsqueeze_(-1)
z_between = alphas * z[1:2] + (- alphas + 1) * z[:1]
return z_between
def interpolate_higher(self, z: T, num_between: Optional[int] = None):
z_between = self.interpolate_(z, num_between)
zh, gmms = self.decomposition_control.forward_split(self.decomposition_control.forward_upper(z_between))
return zh, gmms
def interpolate(self, item_a: int, item_b: int, num_between: int):
items = torch.tensor((item_a, item_b), dtype=torch.int64, device=self.device)
z = self.get_z(items)
z_between = self.interpolate_(z, num_between)
zh, gmms = self.decomposition_control(z_between)
return zh, gmms
def get_disentanglement(self, items: T):
z_a = self.get_z(items)
z_b = self.decomposition_control.forward_bottom(z_a)
zh, gmms = self.decomposition_control.forward_split(self.decomposition_control.forward_upper(z_b))
return z_a, z_b, zh, gmms
def get_embeddings(self, item: T):
z = self.get_z(item)
zh, gmms = self.decomposition_control(z)
return zh, z, gmms
def merge_zh_step_a(self, zh, gmms):
b, gp, g, _ = gmms[0].shape
mu, p, phi, eigen = [item.view(b, gp * g, *item.shape[3:]) for item in gmms]
p = p.reshape(*p.shape[:2], -1)
z_gmm = torch.cat((mu, p, phi.unsqueeze(-1), eigen), dim=2).detach()
z_gmm = self.from_gmm(z_gmm)
zh_ = zh + z_gmm
return zh_
def merge_zh(self, zh, gmms, mask: Optional[T] = None) -> TNS:
zh_ = self.merge_zh_step_a(zh, gmms)
zh_, attn = self.mixing_network.forward_with_attention(zh_, mask=mask)
return zh_, attn
def forward_b(self, x, zh, gmms, mask: Optional[T] = None) -> T:
zh, _ = self.merge_zh(zh, gmms, mask)
return self.occupancy_network(x, zh, mask)
def forward_a(self, item: T):
zh, z, gmms = self.get_embeddings(item)
return zh, z, gmms
def get_attention(self, x, item) -> TS:
zh, z, gmms = self.forward_a(item)
zh, _ = self.merge_zh(zh, gmms)
return self.occupancy_network.forward_attention(x, zh)
def forward(self, x, item: T) -> Tuple[T, T, TS, T]:
zh, z, gmms = self.forward_a(item)
return self.forward_b(x, zh, gmms), z, gmms, zh
def forward_mid(self, x: T, zh: T) -> Tuple[T, TS]:
zh, gmms = self.decomposition_control.forward_mid(zh)
return self.forward_b(x, zh, gmms), gmms
def get_random_embeddings(self, num_items: int):
if self.dist is None:
weights = self.z.weight.clone().detach()
mean = weights.mean(0)
weights = weights - mean[None, :]
cov = torch.einsum('nd,nc->dc', weights, weights) / (weights.shape[0] - 1)
self.dist = distributions.multivariate_normal.MultivariateNormal(mean, covariance_matrix=cov)
z_init = self.dist.sample((num_items,))
return z_init
def random_samples(self, num_items: int):
z_init = self.get_random_embeddings(num_items)
zh, gmms = self.decomposition_control(z_init)
return zh, gmms
def __init__(self, opt: Options):
super(Spaghetti, self).__init__()
self.device = opt.device
self.opt = opt
self.z = nn.Embedding(opt.dataset_size, opt.dim_z)
torch.nn.init.normal_(
self.z.weight.data,
0.0,
1. / math.sqrt(opt.dim_z),
)
self.decomposition_control = DecompositionControl(opt)
self.occupancy_network = OccupancyNetwork(opt)
self.from_gmm = nn.Linear(sum(self.decomposition_control.split_shape), opt.dim_h)
if opt.use_encoder:
self.mixing_network = transformer.Transformer(opt.dim_h, opt.num_heads, opt.num_layers,
act=nnf.relu, norm_layer=nn.LayerNorm)
else:
self.mixing_network = transformer.DummyTransformer()
self.dist = None
|