File size: 11,413 Bytes
801501a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
from ..options import Options
from . import models_utils, transformer
from .. import constants
from ..custom_types import *
from torch import distributions
import math
from ..utils import files_utils

def dot(x, y, dim=3):
    return torch.sum(x * y, dim=dim)


def remove_projection(v_1, v_2):
    proj = (dot(v_1, v_2) / dot(v_2, v_2))
    return v_1 - proj[:, :, :, None] * v_2


def get_p_direct(splitted: TS) -> T:
    raw_base = []
    for i in range(constants.DIM):
        u = splitted[i]
        for j in range(i):
            u = remove_projection(u, raw_base[j])
        raw_base.append(u)
    p = torch.stack(raw_base, dim=3)
    p = p / torch.norm(p, p=2, dim=4)[:, :, :, :, None]  # + self.noise[None, None, :, :]
    return p


def split_gm(splitted: TS) -> TS:
    p = get_p_direct(splitted)
    # eigenvalues
    eigen = splitted[-3] ** 2 + constants.EPSILON
    mu = splitted[-2]
    phi = splitted[-1].squeeze(3)
    return mu, p, phi, eigen


class DecompositionNetwork(nn.Module):

    def forward_bottom(self, x):
        return self.l1(x).view(-1, self.bottom_width, self.embed_dim)

    def forward_upper(self, x):
        return self.to_zb(x)

    def forward(self, x):
        x = self.forward_bottom(x)
        x = self.forward_upper(x)
        return x

    def __init__(self, opt: Options, act=nnf.relu, norm_layer: nn.Module = nn.LayerNorm):
        super(DecompositionNetwork, self).__init__()
        self.bottom_width = opt.num_gaussians
        self.embed_dim = opt.dim_h
        self.l1 = nn.Linear(opt.dim_z, self.bottom_width * opt.dim_h)
        if opt.decomposition_network == 'mlp':

            self.to_zb = models_utils.MLP((opt.dim_h, *([2 * opt.dim_h] * opt.decomposition_num_layers), opt.dim_h))
        else:
            self.to_zb = transformer.Transformer(opt.dim_h, opt.num_heads, opt.num_layers, act=act,
                                                       norm_layer=norm_layer)


class OccupancyMlP(nn.Module):
    ## base on DeepSDF https://github.com/facebookresearch/DeepSDF
    def forward(self, x, z):
        x_ = x = torch.cat((x, z), dim=-1)
        for i, layer in enumerate(self.layers):
            if layer == self.latent_in:
                x = torch.cat([x, x_], 2)
            x = layer(x)
            if i < len(self.layers) - 2:
                x = self.relu(x)
                # x = self.dropout(self.relu(x))
            # files_utils.save_pickle(x.detach().cpu(), f"/home/amirh/projects/spaghetti_private/assets/debug/out_{i}")
        return x

    def __init__(self, opt: Options):
        super(OccupancyMlP, self).__init__()
        dim_in = 2 * (opt.pos_dim + constants.DIM)
        dims = [dim_in] + opt.head_occ_size * [dim_in] + [1]
        self.latent_in = opt.head_occ_size // 2 + opt.head_occ_size % 2
        dims[self.latent_in] += dims[0]
        self.dropout = nn.Dropout(.2)
        self.relu = nn.ReLU(True)
        layers = []
        for i in range(0, len(dims) - 1):
            layers.append(nn.utils.weight_norm(nn.Linear(dims[i], dims[i + 1])))
        self.layers = nn.ModuleList(layers)


class OccupancyNetwork(nn.Module):

    def get_pos(self, coords: T):
        pos = self.pos_encoder(coords)
        pos = torch.cat((coords, pos), dim=2)
        return pos

    def forward_attention(self, coords: T, zh: T, mask: Optional[T] = None, alpha: TN = None) -> TS:
        pos = self.get_pos(coords)
        _, attn = self.occ_transformer.forward_with_attention(pos, zh, mask, alpha)
        return attn

    def forward(self, coords: T, zh: T,  mask: TN = None, alpha: TN = None) -> T:
        pos = self.get_pos(coords)
        x = self.occ_transformer(pos, zh, mask, alpha)
        out = self.occ_mlp(pos, x)
        if out.shape[-1] == 1:
            out = out.squeeze(-1)
        return out

    def __init__(self, opt: Options):
        super(OccupancyNetwork, self).__init__()
        self.pos_encoder = models_utils.SineLayer(constants.DIM, opt.pos_dim, is_first=True)

        if hasattr(opt, 'head_occ_type') and opt.head_occ_type == 'skip':
            self.occ_mlp = OccupancyMlP(opt)
        else:
            self.occ_mlp = models_utils.MLP([(opt.pos_dim + constants.DIM)] +
                                            [opt.dim_h] * opt.head_occ_size + [1])
        self.occ_transformer = transformer.Transformer(opt.pos_dim + constants.DIM,
                                                       opt.num_heads_head, opt.num_layers_head,
                                                       dim_ref=opt.dim_h)

class DecompositionControl(models_utils.Model):

    def forward_bottom(self, x):
        z_bottom = self.decomposition.forward_bottom(x)
        return z_bottom

    def forward_upper(self, x):
        x = self.decomposition.forward_upper(x)
        return x

    def forward_split(self, x: T) -> Tuple[T, TS]:
        b = x.shape[0]
        raw_gmm = self.to_gmm(x).unsqueeze(1)
        gmms = split_gm(torch.split(raw_gmm, self.split_shape, dim=3))
        zh = self.to_s(x)
        zh = zh.view(b, -1, zh.shape[-1])
        return zh, gmms

    @staticmethod
    def apply_gmm_affine(gmms: TS, affine: T):
        mu, p, phi, eigen = gmms
        if affine.dim() == 2:
            affine = affine.unsqueeze(0).expand(mu.shape[0], *affine.shape)
        mu_r = torch.einsum('bad, bpnd->bpna', affine, mu)
        p_r = torch.einsum('bad, bpncd->bpnca', affine, p)
        return mu_r, p_r, phi, eigen

    @staticmethod
    def concat_gmm(gmm_a: TS, gmm_b: TS):
        out = []
        num_gaussians = gmm_a[0].shape[2] // 2
        for element_a, element_b in zip(gmm_a, gmm_b):
            out.append(torch.cat((element_a[:, :, :num_gaussians], element_b[:, :, :num_gaussians]), dim=2))
        return out

    def forward_mid(self, zs) -> Tuple[T, TS]:
        zh, gmms = self.forward_split(zs)
        if self.reflect is not None:
            gmms_r = self.apply_gmm_affine(gmms, self.reflect)
            gmms = self.concat_gmm(gmms, gmms_r)
        return zh, gmms

    def forward_low(self, z_init):
        zs = self.decomposition(z_init)
        return zs

    def forward(self, z_init) -> Tuple[T, TS]:
        zs = self.forward_low(z_init)
        zh, gmms = self.forward_mid(zs)
        return zh, gmms

    @staticmethod
    def get_reflection(reflect_axes: Tuple[bool, ...]):
        reflect = torch.eye(constants.DIM)
        for i in range(constants.DIM):
            if reflect_axes[i]:
                reflect[i, i] = -1
        return reflect

    def __init__(self, opt: Options):
        super(DecompositionControl, self).__init__()
        if sum(opt.symmetric) > 0:
            reflect = self.get_reflection(opt.symmetric)
            self.register_buffer("reflect", reflect)
        else:
            self.reflect = None
        self.split_shape = tuple((constants.DIM + 2) * [constants.DIM] + [1])
        self.decomposition = DecompositionNetwork(opt)
        self.to_gmm = nn.Linear(opt.dim_h, sum(self.split_shape))
        self.to_s = nn.Linear(opt.dim_h, opt.dim_h)


class Spaghetti(models_utils.Model):

    def get_z(self, item: T):
        return self.z(item)

    @staticmethod
    def interpolate_(z, num_between: Optional[int] = None):
        if num_between is None:
            num_between = z.shape[0]
        alphas = torch.linspace(0, 1, num_between, device=z.device)
        while alphas.dim() != z.dim():
            alphas.unsqueeze_(-1)
        z_between = alphas * z[1:2] + (- alphas + 1) * z[:1]
        return z_between

    def interpolate_higher(self, z: T, num_between: Optional[int] = None):
        z_between = self.interpolate_(z, num_between)
        zh, gmms = self.decomposition_control.forward_split(self.decomposition_control.forward_upper(z_between))
        return zh, gmms

    def interpolate(self, item_a: int, item_b: int, num_between: int):
        items = torch.tensor((item_a, item_b), dtype=torch.int64, device=self.device)
        z = self.get_z(items)
        z_between = self.interpolate_(z, num_between)
        zh, gmms = self.decomposition_control(z_between)
        return zh, gmms

    def get_disentanglement(self, items: T):
        z_a = self.get_z(items)
        z_b = self.decomposition_control.forward_bottom(z_a)
        zh, gmms = self.decomposition_control.forward_split(self.decomposition_control.forward_upper(z_b))
        return z_a, z_b, zh, gmms

    def get_embeddings(self, item: T):
        z = self.get_z(item)
        zh, gmms = self.decomposition_control(z)
        return zh, z, gmms

    def merge_zh_step_a(self, zh, gmms):
        b, gp, g, _ = gmms[0].shape
        mu, p, phi, eigen = [item.view(b, gp * g, *item.shape[3:]) for item in gmms]
        p = p.reshape(*p.shape[:2], -1)
        z_gmm = torch.cat((mu, p, phi.unsqueeze(-1), eigen), dim=2).detach()
        z_gmm = self.from_gmm(z_gmm)
        zh_ = zh + z_gmm
        return zh_

    def merge_zh(self, zh, gmms, mask: Optional[T] = None) -> TNS:
        zh_ = self.merge_zh_step_a(zh, gmms)
        zh_, attn = self.mixing_network.forward_with_attention(zh_, mask=mask)
        return zh_, attn

    def forward_b(self, x, zh, gmms, mask: Optional[T] = None) -> T:
        zh, _ = self.merge_zh(zh, gmms, mask)
        return self.occupancy_network(x, zh, mask)

    def forward_a(self, item: T):
        zh, z, gmms = self.get_embeddings(item)
        return zh, z, gmms

    def get_attention(self, x, item) -> TS:
        zh, z, gmms = self.forward_a(item)
        zh, _ = self.merge_zh(zh, gmms)
        return self.occupancy_network.forward_attention(x, zh)

    def forward(self, x, item: T) -> Tuple[T, T, TS, T]:
        zh, z, gmms = self.forward_a(item)
        return self.forward_b(x, zh, gmms), z, gmms, zh

    def forward_mid(self, x: T, zh: T) -> Tuple[T, TS]:
        zh, gmms = self.decomposition_control.forward_mid(zh)
        return self.forward_b(x, zh, gmms), gmms

    def get_random_embeddings(self, num_items: int):
        if self.dist is None:
            weights = self.z.weight.clone().detach()
            mean = weights.mean(0)
            weights = weights - mean[None, :]
            cov = torch.einsum('nd,nc->dc', weights, weights) / (weights.shape[0] - 1)
            self.dist = distributions.multivariate_normal.MultivariateNormal(mean, covariance_matrix=cov)
        z_init = self.dist.sample((num_items,))
        return z_init

    def random_samples(self, num_items: int):
        z_init = self.get_random_embeddings(num_items)
        zh, gmms = self.decomposition_control(z_init)
        return zh, gmms

    def __init__(self, opt: Options):
        super(Spaghetti, self).__init__()
        self.device = opt.device
        self.opt = opt
        self.z = nn.Embedding(opt.dataset_size, opt.dim_z)
        torch.nn.init.normal_(
            self.z.weight.data,
            0.0,
            1. / math.sqrt(opt.dim_z),
        )
        self.decomposition_control = DecompositionControl(opt)
        self.occupancy_network = OccupancyNetwork(opt)
        self.from_gmm = nn.Linear(sum(self.decomposition_control.split_shape), opt.dim_h)
        if opt.use_encoder:
            self.mixing_network = transformer.Transformer(opt.dim_h, opt.num_heads, opt.num_layers,
                                                              act=nnf.relu, norm_layer=nn.LayerNorm)
        else:
            self.mixing_network = transformer.DummyTransformer()
        self.dist = None