File size: 7,338 Bytes
801501a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import skimage.measure
import time
from ..custom_types import *
from .train_utils import Logger
from .. import constants


def mcubes_skimage(pytorch_3d_occ_tensor: T, voxel_grid_origin: List[float], voxel_size: float) -> T_Mesh:
    numpy_3d_occ_tensor = pytorch_3d_occ_tensor.numpy()
    try:
        marching_cubes = skimage.measure.marching_cubes if 'marching_cubes' in dir(skimage.measure) else skimage.measure.marching_cubes_lewiner
        verts, faces, normals, values = marching_cubes(numpy_3d_occ_tensor, level=0.0, spacing=[voxel_size] * 3)
    except BaseException:
        print("mc failed")
        return None
    mesh_points = np.zeros_like(verts)
    mesh_points[:, 0] = voxel_grid_origin[0] + verts[:, 0]
    mesh_points[:, 1] = voxel_grid_origin[1] + verts[:, 1]
    mesh_points[:, 2] = voxel_grid_origin[2] + verts[:, 2]
    return torch.from_numpy(mesh_points.copy()).float(), torch.from_numpy(faces.copy()).long()


class MarchingCubesMeshing:


    def fill_samples(self, decoder, samples, device: Optional[D] = None) -> T:
        num_samples = samples.shape[1]
        num_iters = num_samples // self.max_batch + int(num_samples % self.max_batch != 0)
        sample_coords = samples[:3]
        if self.verbose:
            logger = Logger()
            logger.start(num_iters, tag='meshing')
        for i in range(num_iters):
            sample_subset = sample_coords[:, i * self.max_batch: min((i + 1) * self.max_batch, num_samples)]
            if device is not None:
                sample_subset = sample_subset.to(device)
            sample_subset = sample_subset.T
            samples[3, i * self.max_batch: min((i + 1) * self.max_batch, num_samples)] = (
                decoder(sample_subset * self.scale).squeeze().detach()
            )
            if self.verbose:
                logger.reset_iter()
        if self.verbose:
            logger.stop()
        return samples

    def fill_recursive(self, decoder, samples: T, stride: int, base_res: int, depth: int) -> T:
        if base_res <= self.min_res:
            samples_ = self.fill_samples(decoder, samples)
            return samples_
        kernel_size = 7 + 4 * depth
        padding = tuple([kernel_size // 2] * 6)
        samples_ = samples.view(1, 4, base_res, base_res, base_res)
        samples_ = nnf.avg_pool3d(samples_, stride, stride)
        samples_ = samples_.view(4, -1)
        res = base_res // stride
        samples_lower = self.fill_recursive(decoder, samples_, stride, res, depth - 1)
        mask = samples_lower[-1, :].lt(.3)
        mask = mask.view(1, 1, res, res, res).float()
        mask = nnf.pad(mask, padding, mode='replicate')
        mask = nnf.max_pool3d(mask, kernel_size, 1)
        mask = nnf.interpolate(mask, scale_factor=stride)
        mask = mask.flatten().bool()
        samples[:, mask] = self.fill_samples(decoder, samples[:, mask])
        return samples

    def tune_resolution(self, res: int):
        counter = 1
        while res > self.min_res:
            res = res // 2
            counter *= 2
        return res * counter

    @staticmethod
    def get_res_samples(res):
        voxel_origin = torch.tensor([-1., -1., -1.])
        voxel_size = 2.0 / (res - 1)
        overall_index = torch.arange(0, res ** 3, 1, dtype=torch.int64)
        samples = torch.ones(4, res ** 3).detach()
        samples.requires_grad = False
        # transform first 3 columns
        # to be the x, y, z index
        div_1 = torch.div(overall_index, res, rounding_mode='floor')
        samples[2, :] = (overall_index % res).float()
        samples[1, :] = (div_1 % res).float()
        samples[0, :] = (torch.div(div_1, res, rounding_mode='floor') % res).float()
        # transform first 3 columns
        # to be the x, y, z coordinate
        samples[:3] = samples[:3] * voxel_size + voxel_origin[:, None]
        # samples[0, :] = (samples[:, 0] * voxel_size) + voxel_origin[2]
        # samples[1, :] = (samples[:, 1] * voxel_size) + voxel_origin[1]
        # samples[2, :] = (samples[:, 2] * voxel_size) + voxel_origin[0]
        return samples

    def register_resolution(self, res: int):
        res = self.tune_resolution(res)
        if res not in self.sample_cache:
            samples = self.get_res_samples(res)
            samples = samples.to(self.device)
            self.sample_cache[res] = samples
        else:
            samples = self.sample_cache[res]
            samples[3, :] = 1
        return samples, res

    def get_grid(self, decoder, res):
        stride = 2
        samples, res = self.register_resolution(res)
        depth = int(np.ceil(np.log2(res) - np.log2(self.min_res)))
        samples = self.fill_recursive(decoder, samples, stride, res, depth)
        occ_values = samples[3]
        occ_values = occ_values.reshape(res, res, res)
        return occ_values

    def occ_meshing(self, decoder, res: int = 256, get_time: bool = False, verbose=False):
        start = time.time()
        voxel_origin = [-1., -1., -1.]
        voxel_size = 2.0 / (res - 1)
        occ_values = self.get_grid(decoder, res)
        if verbose:
            end = time.time()
            print("sampling took: %f" % (end - start))
            if get_time:
                return end - start

        mesh_a = mcubes_skimage(occ_values.data.cpu(), voxel_origin, voxel_size)
        # mesh_a = mcubes_torch(occ_values, voxel_origin, voxel_size)

        if verbose:
            end_b = time.time()
            print("mcube took: %f" % (end_b - end))
            print("meshing took: %f" % (end_b - start))
        return mesh_a

    def __init__(self, device: D, max_batch: int = 64 ** 3, min_res: int = 64, scale: float = 1, verbose: bool = False):
        self.device = device
        self.max_batch = 32 ** 3 if constants.IS_WINDOWS else max_batch
        self.min_res = min_res
        self.scale = scale
        self.verbose = verbose
        self.sample_cache = {}


def create_mesh_old(decoder, res=256, max_batch=64 ** 3, scale=1, device=CPU, verbose=False, get_time: bool = False):
    meshing = MarchingCubesMeshing(device, max_batch=max_batch, scale=scale, verbose=verbose)
    start = time.time()

    # NOTE: the voxel_origin is actually the (bottom, left, down) corner, not the middle
    voxel_origin = [-1, -1, -1]
    voxel_size = 2.0 / (res - 1)

    overall_index = torch.arange(0, res ** 3, 1, out=torch.LongTensor())
    samples = torch.zeros(res ** 3, 4)

    # transform first 3 columns
    # to be the x, y, z index
    samples[:, 2] = overall_index % res
    samples[:, 1] = (overall_index.long() // res) % res
    samples[:, 0] = ((overall_index.long() // res) // res) % res

    # transform first 3 columns
    # to be the x, y, z coordinate
    samples[:, 0] = (samples[:, 0] * voxel_size) + voxel_origin[2]
    samples[:, 1] = (samples[:, 1] * voxel_size) + voxel_origin[1]
    samples[:, 2] = (samples[:, 2] * voxel_size) + voxel_origin[0]
    samples = meshing.fill_samples(decoder, samples, device=device)
    sdf_values = samples[:, 3]
    # return sdf_values, samples[:, :3]
    sdf_values = sdf_values.reshape(res, res, res)

    end = time.time()
    print("sampling took: %f" % (end - start))
    if get_time:
        return end - start
    return mcubes_skimage(
        sdf_values.data.cpu(),
        voxel_origin,
        voxel_size,
    )