Spaces:
Sleeping
Sleeping
File size: 23,370 Bytes
801501a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 |
# from chamferdist import ChamferDistance
from ..custom_types import *
from ..constants import EPSILON
from functools import reduce
import igl
# import trimesh
from ..custom_types import T_Mesh, TS
def scale_all(*values: T):
# mean_std = [(val.mean(), val.std()) for val in values]
# values = [val.clamp(scales[0] - scales[1] * 3, scales[0] + scales[1] * 3) for val,scales in zip(values, mean_std)]
max_val = max([val.max().item() for val in values])
min_val = min([val.min().item() for val in values])
scale = max_val - min_val
values = [(val - min_val) / scale for val in values]
if len(values) == 1:
return values[0]
return values
def get_faces_normals(mesh: Union[T_Mesh, T]) -> T:
if type(mesh) is not T:
vs, faces = mesh
vs_faces = vs[faces]
else:
vs_faces = mesh
if vs_faces.shape[-1] == 2:
vs_faces = torch.cat(
(vs_faces, torch.zeros(*vs_faces.shape[:2], 1, dtype=vs_faces.dtype, device=vs_faces.device)), dim=2)
face_normals = torch.cross(vs_faces[:, 1, :] - vs_faces[:, 0, :], vs_faces[:, 2, :] - vs_faces[:, 1, :])
return face_normals
def compute_face_areas(mesh: Union[T_Mesh, T]) -> TS:
face_normals = get_faces_normals(mesh)
face_areas = torch.norm(face_normals, p=2, dim=1)
face_areas_ = face_areas.clone()
face_areas_[torch.eq(face_areas_, 0)] = 1
face_normals = face_normals / face_areas_[:, None]
face_areas = 0.5 * face_areas
return face_areas, face_normals
def check_sign_area(*meshes: T_Mesh) -> bool:
for mesh in meshes:
face_normals = get_faces_normals(mesh)
if not face_normals[:, 2].gt(0).all():
return False
return True
def to_numpy(*tensors: T) -> ARRAYS:
params = [param.detach().cpu().numpy() if type(param) is T else param for param in tensors]
return params
def create_mapper(mask: T) -> T:
mapper = torch.zeros(mask.shape[0], dtype=torch.int64, device=mask.device) - 1
mapper[mask] = torch.arange(mask.sum().item(), device=mask.device)
return mapper
def mesh_center(mesh: T_Mesh):
return mesh[0].mean(0)
def get_center(vs) -> T:
max_vals = vs.max(0)[0]
min_vals = vs.min(0)[0]
center = (max_vals + min_vals) / 2
return center
def to_center(vs):
vs -= get_center(vs)[None, :]
return vs
def scale_by_ref(mesh, ref_mesh, in_place=True, scale=1.):
vs, _ = ref_mesh
if not in_place:
vs = vs.clone()
center = get_center(vs)
vs -= center[None, :]
scale = scale / vs.norm(2, dim=1).max()
vs = (mesh[0] - center[None, :]) * scale
return vs, mesh[1]
def to_unit_sphere(mesh: T_Mesh, in_place: bool = True, scale=1.) -> T_Mesh:
vs, faces = mesh
if not in_place:
vs = vs.clone()
vs = to_center(vs)
norm = vs.norm(2, dim=1).max()
vs *= scale * norm ** -1
return vs, faces
def scale_from_ref(mesh: T_Mesh, center: T, scale: float, in_place: bool = True) -> T_Mesh:
vs, faces = mesh
if not in_place:
vs = vs.clone()
vs -= center[None, :]
vs *= scale
return vs, faces
def to_unit_cube(*meshes: T_Mesh_T, scale=1, in_place: bool = True) -> Tuple[Union[T_Mesh_T, Tuple[T_Mesh_T, ...]], Tuple[T, float]]:
remove_me = 0
meshes = [(mesh, remove_me) if type(mesh) is T else mesh for mesh in meshes]
vs, faces = meshes[0]
max_vals = vs.max(0)[0]
min_vals = vs.min(0)[0]
max_range = (max_vals - min_vals).max() / 2
center = (max_vals + min_vals) / 2
meshes_ = []
scale = float(scale / max_range)
for mesh in meshes:
vs_, faces_ = scale_from_ref(mesh, center, scale)
meshes_.append(vs_ if faces_ is remove_me else (vs_, faces_))
if len(meshes_) == 1:
meshes_ = meshes_[0]
return meshes_, (center, scale)
# # in place
# def to_unit_edge(*meshes: T_Mesh) -> Tuple[Union[T_Mesh, Tuple[T_Mesh, ...]], Tuple[T, float]]:
# ref = meshes[0]
# center = ref[0].mean(0)
# ratio = edge_lengths(ref).mean().item()
# for mesh in meshes:
# vs, _ = mesh
# vs -= center[None, :].to(vs.device)
# vs /= ratio
# if len(meshes) == 1:
# meshes = meshes[0]
# return meshes, (center, ratio)
def get_edges_ind(mesh: T_Mesh) -> T:
vs, faces = mesh
raw_edges = torch.cat([faces[:, [i, (i + 1) % 3]] for i in range(3)]).sort()
raw_edges = raw_edges[0].cpu().numpy()
edges = {(int(edge[0]), int(edge[1])) for edge in raw_edges}
edges = torch.tensor(list(edges), dtype=torch.int64, device=faces.device)
return edges
def edge_lengths(mesh: T_Mesh, edges_ind: TN = None) -> T:
vs, faces = mesh
if edges_ind is None:
edges_ind = get_edges_ind(mesh)
edges = vs[edges_ind]
return torch.norm(edges[:, 0] - edges[:, 1], 2, dim=1)
# in place
def to_unit_edge(*meshes: T_Mesh) -> Tuple[Union[T_Mesh, Tuple[T_Mesh, ...]], Tuple[T, float]]:
ref = meshes[0]
center = ref[0].mean(0)
ratio = edge_lengths(ref).mean().item()
for mesh in meshes:
vs, _ = mesh
vs -= center[None, :].to(vs.device)
vs /= ratio
if len(meshes) == 1:
meshes = meshes[0]
return meshes, (center, ratio)
def to(tensors, device: D) -> Union[T_Mesh, TS, T]:
out = []
for tensor in tensors:
if type(tensor) is T:
out.append(tensor.to(device, ))
elif type(tensor) is tuple or type(tensors) is List:
out.append(to(list(tensor), device))
else:
out.append(tensor)
if len(tensors) == 1:
return out[0]
else:
return tuple(out)
def clone(*tensors: Union[T, TS]) -> Union[TS, T_Mesh]:
out = []
for t in tensors:
if type(t) is T:
out.append(t.clone())
else:
out.append(clone(*t))
return out
def get_box(w: float, h: float, d: float) -> T_Mesh:
vs = [[0, 0, 0], [w, 0, 0], [0, d, 0], [w, d, 0],
[0, 0, h], [w, 0, h], [0, d, h], [w, d, h]]
faces = [[0, 2, 1], [1, 2, 3], [4, 5, 6], [5, 7, 6],
[0, 1, 5], [0, 5, 4], [2, 6, 7], [3, 2, 7],
[1, 3, 5], [3, 7, 5], [0, 4, 2], [2, 4, 6]]
return torch.tensor(vs, dtype=torch.float32), torch.tensor(faces, dtype=torch.int64)
def normalize(t: T):
t = t / t.norm(2, dim=1)[:, None]
return t
def interpolate_vs(mesh: T_Mesh, faces_inds: T, weights: T) -> T:
vs = mesh[0][mesh[1][faces_inds]]
vs = vs * weights[:, :, None]
return vs.sum(1)
def sample_uvw(shape, device: D):
u, v = torch.rand(*shape, device=device), torch.rand(*shape, device=device)
mask = (u + v).gt(1)
u[mask], v[mask] = -u[mask] + 1, -v[mask] + 1
w = -u - v + 1
uvw = torch.stack([u, v, w], dim=len(shape))
return uvw
def get_sampled_fe(fe: T, mesh: T_Mesh, face_ids: T, uvw: TN) -> T:
# to_squeeze =
if fe.dim() == 1:
fe = fe.unsqueeze(1)
if uvw is None:
fe_iner = fe[face_ids]
else:
vs_ids = mesh[1][face_ids]
fe_unrolled = fe[vs_ids]
fe_iner = torch.einsum('sad,sa->sd', fe_unrolled, uvw)
# if to_squeeze:
# fe_iner = fe_iner.squeeze_(1)
return fe_iner
def sample_on_faces(mesh: T_Mesh, num_samples: int) -> TS:
vs, faces = mesh
uvw = sample_uvw([faces.shape[0], num_samples], vs.device)
samples = torch.einsum('fad,fna->fnd', vs[faces], uvw)
return samples, uvw
class SampleBy(Enum):
AREAS = 0
FACES = 1
HYB = 2
def sample_on_mesh(mesh: T_Mesh, num_samples: int, face_areas: TN = None,
sample_s: SampleBy = SampleBy.HYB) -> TNS:
vs, faces = mesh
if faces is None: # sample from pc
uvw = None
if vs.shape[0] < num_samples:
chosen_faces_inds = torch.arange(vs.shape[0])
else:
chosen_faces_inds = torch.argsort(torch.rand(vs.shape[0]))[:num_samples]
samples = vs[chosen_faces_inds]
else:
weighted_p = []
if sample_s == SampleBy.AREAS or sample_s == SampleBy.HYB:
if face_areas is None:
face_areas, _ = compute_face_areas(mesh)
face_areas[torch.isnan(face_areas)] = 0
weighted_p.append(face_areas / face_areas.sum())
if sample_s == SampleBy.FACES or sample_s == SampleBy.HYB:
weighted_p.append(torch.ones(mesh[1].shape[0], device=mesh[0].device))
chosen_faces_inds = [torch.multinomial(weights, num_samples // len(weighted_p), replacement=True) for weights in weighted_p]
if sample_s == SampleBy.HYB:
chosen_faces_inds = torch.cat(chosen_faces_inds, dim=0)
chosen_faces = faces[chosen_faces_inds]
uvw = sample_uvw([num_samples], vs.device)
samples = torch.einsum('sf,sfd->sd', uvw, vs[chosen_faces])
return samples, chosen_faces_inds, uvw
def get_samples(mesh: T_Mesh, num_samples: int, sample_s: SampleBy, *features: T) -> Union[T, TS]:
samples, face_ids, uvw = sample_on_mesh(mesh, num_samples, sample_s=sample_s)
if len(features) > 0:
samples = [samples] + [get_sampled_fe(fe, mesh, face_ids, uvw) for fe in features]
return samples, face_ids, uvw
def find_barycentric(vs: T, triangles: T) -> T:
def compute_barycentric(ind):
triangles[:, ind] = vs
alpha = compute_face_areas(triangles)[0] / areas
triangles[:, ind] = recover[:, ind]
return alpha
device, dtype = vs.device, vs.dtype
vs = vs.to(device, dtype=torch.float64)
triangles = triangles.to(device, dtype=torch.float64)
areas, _ = compute_face_areas(triangles)
recover = triangles.clone()
barycentric = [compute_barycentric(i) for i in range(3)]
barycentric = torch.stack(barycentric, dim=1)
# assert barycentric.sum(1).max().item() <= 1 + EPSILON
return barycentric.to(device, dtype=dtype)
def from_barycentric(mesh: Union[T_Mesh, T], face_ids: T, weights: T) -> T:
if type(mesh) is not T:
triangles: T = mesh[0][mesh[1]]
else:
triangles: T = mesh
to_squeeze = weights.dim() == 1
if to_squeeze:
weights = weights.unsqueeze(0)
face_ids = face_ids.unsqueeze(0)
vs = torch.einsum('nad,na->nd', triangles[face_ids], weights)
if to_squeeze:
vs = vs.squeeze(0)
return vs
def check_circle_angles(mesh: T_Mesh, center_ind: int, select: T) -> bool:
vs, _ = mesh
all_vecs = vs[select] - vs[center_ind][None, :]
all_vecs = all_vecs / all_vecs.norm(2, 1)[:, None]
all_vecs = torch.cat([all_vecs, all_vecs[:1]], dim=0)
all_cos = torch.einsum('nd,nd->n', all_vecs[1:], all_vecs[:-1])
all_angles = torch.acos_(all_cos)
all_angles = all_angles.sum()
return (all_angles - 2 * np.pi).abs() < EPSILON
def vs_over_triangle(vs_mid: T, triangle: T, normals=None) -> T:
if vs_mid.dim() == 1:
vs_mid = vs_mid.unsqueeze(0)
triangle = triangle.unsqueeze(0)
if normals is None:
_, normals = compute_face_areas(triangle)
select = torch.arange(3)
d_vs = vs_mid[:, None, :] - triangle
d_f = triangle[:, select] - triangle[:, (select + 1) % 3]
all_cross = torch.cross(d_vs, d_f, dim=2)
all_dots = torch.einsum('nd,nad->na', normals, all_cross)
is_over = all_dots.ge(0).long().sum(1).eq(3)
return is_over
def f2v(num_faces: int, genus: int = 0) -> int: # assuming there are not boundaries
return num_faces // 2 + (1 - genus) * 2
def v2f(num_vs: int, genus: int = 0) -> int: # assuming there are not boundaries
return 2 * num_vs - 4 + 4 * genus
def get_dist_mat(a: T, b: T, batch_size: int = 1000, sqrt: bool = False) -> T:
"""
:param a:
:param b:
:param batch_size: Limit batches per distance calculation to avoid out-of-mem
:return:
"""
iters = a.shape[0] // batch_size
dist_list = [((a[i * batch_size: (i + 1) * batch_size, None, :] - b[None, :, :]) ** 2).sum(-1)
for i in range(iters + 1)]
all_dist: T = torch.cat(dist_list, dim=0)
if sqrt:
all_dist = all_dist.sqrt_()
return all_dist
def naive_knn(k: int, dist_mat: T, is_biknn=True):
"""
:param k:
:param dist_mat:
:param is_biknn: When false, calcluates only closest element in a per element of b.
When true, calcluates only closest element in a <--> b both ways.
:param batch_size: Limit batches per distance calculation to avoid out-of-mem
:return:
"""
_, close_to_b = dist_mat.topk(k, 0, largest=False)
if is_biknn:
_, close_to_a = dist_mat.topk(k, 1, largest=False)
return close_to_a, close_to_b.t()
return close_to_b.t()
def chamfer_igl():
igl.cha
def simple_chamfer(a: T, b: T, normals_a=None, normals_b=None, dist_mat: Optional[T] = None) -> Union[T, TS]:
def one_direction(fixed: T, search: T, n_f, n_s, closest_id) -> TS:
min_dist = (fixed - search[closest_id]).norm(2, 1).mean(0)
if n_f is not None:
normals_dist = -torch.einsum('nd,nd->n', n_f, n_s[closest_id]).mean(0)
else:
normals_dist = 0
return min_dist, normals_dist
if dist_mat is None:
dist_mat = get_dist_mat(a, b)
close_to_a, close_to_b = naive_knn(1, dist_mat)
dist_a, dist_a_n = one_direction(a, b, normals_a, normals_b, close_to_a.flatten())
dist_b, dist_b_n = one_direction(b, a, normals_b, normals_a, close_to_b.flatten())
if normals_a is None:
return dist_a + dist_b
return dist_a + dist_b, dist_a_n + dist_b_n
def is_quad(mesh: Union[T_Mesh, Tuple[T, List[List[int]]]]) -> bool:
if type(mesh) is T:
return False
if type(mesh[1]) is T:
return False
else:
faces: List[List[int]] = mesh[1]
for f in faces:
if len(f) == 4:
return True
return False
def align_mesh(mesh: T_Mesh, ref_vs: T) -> T_Mesh:
vs, faces = mesh
dist_mat = get_dist_mat(vs, ref_vs)
dist, mapping_id = dist_mat.min(1)
vs_select = dist_mat.min(0)[1]
if mapping_id.unique().shape[0] != vs.shape[0]:
print('\n\033[91mWarning, alignment is not bijective\033[0m')
vs_aligned = vs[vs_select]
faces_aligned = mapping_id[faces]
return vs_aligned, faces_aligned
# def triangulate_mesh(mesh: Union[T_Mesh, Tuple[T, List[List[int_b]]]]) -> Tuple[T_Mesh, Optional[T]]:
#
# def check_triangle(triangle: List[int_b]) -> bool:
# e_1: T = vs[triangle[1]] - vs[triangle[0]]
# e_2: T = vs[triangle[2]] - vs[triangle[0]]
# angle = (e_1 * e_2).sum() / (e_1.norm(2) * e_2.norm(2))
# return angle.abs().item() < 1 - 1e-6
#
# def add_triangle(face_: List[int_b]):
# triangle = None
# for i in range(len(face_)):
# triangle = [face_[i], face_[(i + 1) % len(face_)], face_[(i + 2) % len(face_)]]
# if check_triangle(triangle):
# face_ = [f for j, f in enumerate(face_) if j != (i + 1) % len(face_)]
# break
# assert triangle is not None
# faces_.append(triangle)
# face_twin.append(-1)
# return face_
#
# if not is_quad(mesh):
# return mesh, None
#
# vs, faces = mesh
# faces_ = []
# face_twin = []
# for face in faces:
# if len(face) == 3:
# faces_.append(face)
# face_twin.append(-1)
# else:
# while len(face) > 4:
# face = add_triangle(face)
# new_faces = [[face[0], face[1], face[2]], [face[0], face[2], face[3]]]
# if not check_triangle(new_faces[0]) or not check_triangle(new_faces[1]):
# new_faces = [[face[0], face[1], face[3]], [face[1], face[2], face[3]]]
# assert check_triangle(new_faces[0]) and check_triangle(new_faces[1])
# faces_.extend(new_faces)
# face_twin.extend([len(faces_) - 1, len(faces_) - 2])
# # else:
# # raise ValueError(f'mesh with {len(face)} edges polygons is not supported')
# faces_ = torch.tensor(faces_, device=vs.device, dtype=torch.int64)
# face_twin = torch.tensor(face_twin, device=vs.device, dtype=torch.int64)
# return (vs, faces_), face_twin
def triangulate_mesh(mesh: Union[T_Mesh, Tuple[T, List[List[int]]]]) -> Tuple[T_Mesh, Optional[T]]:
def get_skinny(faces_) -> T:
vs_faces = vs[faces_]
areas = compute_face_areas(vs_faces)[0]
edges = reduce(
lambda a, b: a + b,
map(
lambda i: ((vs_faces[:, i] - vs_faces[:, (i + 1) % 3]) ** 2).sum(1),
range(3)
)
)
skinny_value = np.sqrt(48) * areas / edges
return skinny_value
if not is_quad(mesh):
return mesh, None
vs, faces = mesh
device = vs.device
faces_keep = torch.tensor([face for face in faces if len(face) == 3], dtype=torch.int64, device=device)
faces_quads = torch.tensor([face for face in faces if len(face) != 3], dtype=torch.int64, device=device)
faces_tris_a, faces_tris_b = faces_quads[:, :3], faces_quads[:, torch.tensor([0, 2, 3], dtype=torch.int64)]
faces_tris_c, faces_tris_d = faces_quads[:, 1:], faces_quads[:, torch.tensor([0, 1, 3], dtype=torch.int64)]
skinny = [get_skinny(f) for f in (faces_tris_a, faces_tris_b, faces_tris_c, faces_tris_d)]
skinny_ab, skinny_cd = torch.stack((skinny[0], skinny[1]), 1), torch.stack((skinny[2], skinny[3]), 1)
to_flip = skinny_ab.min(1)[0].lt(skinny_cd.min(1)[0])
faces_tris_a[to_flip], faces_tris_b[to_flip] = faces_tris_c[to_flip], faces_tris_d[to_flip]
faces_tris = torch.cat((faces_tris_a, faces_tris_b, faces_keep), dim=0)
face_twin = torch.arange(faces_tris_a.shape[0], device=device)
face_twin = torch.cat((face_twin + faces_tris_a.shape[0], face_twin,
-torch.ones(faces_keep.shape[0], device=device, dtype=torch.int64)))
return (vs, faces_tris), face_twin
def igl_prepare(*dtypes):
def decoder(func):
def wrapper(*args, **kwargs):
mesh = args[0]
device, dtype = mesh[0].device, mesh[0].dtype
vs, faces = to_numpy(*mesh)
result = func((vs, faces), *args[1:], **kwargs)
return to_torch(result, device)
if len(dtypes) == 0:
to_torch = to_torch_empty
elif len(dtypes) == 1:
to_torch = to_torch_multi
else:
to_torch = to_torch_singe
return wrapper
def to_torch_singe(result, device):
return torch.from_numpy(result).to(device, dtype=dtypes[0])
def to_torch_multi(result, device):
return [torch.from_numpy(r).to(device, dtype=dtype) for r, dtype in zip(result, dtypes)]
def to_torch_empty(result, device):
return result
return decoder
@igl_prepare(torch.float32, torch.int64)
def decimate_igl(mesh, num_faces: int):
if mesh[1].shape[0] <= num_faces:
return mesh
vs, faces, _ = igl.remove_duplicates(*mesh, 1e-8)
return igl.decimate(vs, faces, num_faces)[1:3]
@igl_prepare(torch.float32)
def gaussian_curvature(mesh: T_Mesh) -> T:
gc = igl.gaussian_curvature(*mesh)
return gc
@igl_prepare(torch.float32)
def per_vertex_normals_igl(mesh: T_Mesh, weighting: int = 0) -> T:
normals = igl.per_vertex_normals(*mesh, weighting)
return normals
@igl_prepare(torch.float32, torch.int64)
def remove_duplicate_vertices(mesh: T_Mesh, epsilon=1e-7) -> T_Mesh:
vs, _, _, faces = igl.remove_duplicate_vertices(*mesh, epsilon)
return vs, faces
@igl_prepare(torch.float32)
def winding_number_igl(mesh: T_Mesh, query: T) -> T:
query = query.cpu().numpy()
return igl.fast_winding_number_for_meshes(*mesh, query)
@igl_prepare(torch.float32, torch.float32, torch.float32, torch.float32)
def principal_curvature(mesh: T_Mesh) -> TS:
out = igl.principal_curvature(*mesh)
min_dir, max_dir, min_val, max_val = out
return min_dir, max_dir, min_val, max_val
# def get_inside_outside(points: T, mesh: T_Mesh) -> T:
# device = points.device
# points = points.numpy()
# vs, faces = mesh[0].numpy(), mesh[1].numpy()
# winding_numbers = igl.fast_winding_number_for_meshes(vs, faces, points)
# winding_numbers = torch.from_numpy(winding_numbers)
# inside_outside = winding_numbers.lt(.5).float() * 2 - 1
# return inside_outside.to(device)
@igl_prepare()
def get_inside_outside(mesh: T_Mesh, points: ARRAY) -> ARRAY:
batch_size = 1000000
labels = []
num_batch = points.shape[0] // batch_size + 1
for i in range(points.shape[0] // batch_size + 1):
if i == num_batch - 1:
pts_in = points[batch_size * i:]
else:
pts_in = points[batch_size * i: batch_size * (i + 1)]
w = igl.winding_number(*mesh, pts_in)
w = np.less_equal(w, .9)
labels.append(w)
return np.concatenate(labels, axis=0)
@igl_prepare()
def get_fast_inside_outside(mesh: T_Mesh, points: ARRAY):
batch_size = 1000000
labels = []
num_batch = points.shape[0] // batch_size + 1
for i in range(points.shape[0] // batch_size + 1):
if i == num_batch - 1:
pts_in = points[batch_size * i:]
else:
pts_in = points[batch_size * i: batch_size * (i + 1)]
w = igl.fast_winding_number_for_meshes(*mesh, pts_in)
w = np.less_equal(w, .9)
labels.append(w)
return np.concatenate(labels, axis=0)
# def get_inside_outside_trimes(mesh: T_Mesh, points: T) -> Optional[ARRAY]:
# mesh = mesh_utils.to(mesh, points.device)
# mesh = make_data.trimmesh(mesh)
# batch_size = 1000000
# num_batch = points.shape[0] // batch_size + 1
# labels = []
# # try:
# for i in range(points.shape[0] // batch_size + 1):
# if i == num_batch - 1:
# pts_in = points[batch_size * i:]
# else:
# pts_in = points[batch_size * i: batch_size * (i + 1)]
# label = make_data.sdfmeshfun(pts_in, mesh).lt(0)
# label = label.cpu()
# labels.append(label.numpy())
# # except RuntimeError:
# # return None
# return np.concatenate(labels, axis=0)
@igl_prepare(torch.float32, torch.int64)
def trimesh_smooth(mesh, lamb=0.5, iterations=10):
mesh = trimesh.Trimesh(vertices=mesh[0], faces=mesh[1])
# trimesh.smoothing.filter_mut_dif_laplacian(mesh, lamb=lamb, iterations=iterations, volume_constraint=True,
# laplacian_operator=None)
trimesh.smoothing.filter_humphrey(mesh, alpha=0.1, beta=lamb, iterations=iterations, laplacian_operator=None)
return V(mesh.vertices), V(mesh.faces)
def split_by_seg(mesh: T_Mesh, seg: TS) -> TS:
# faces_split, vs_split = {}, {}
labels_all = []
vs, faces = mesh
vs_mid_faces = vs[faces].mean(1)
for vs_ in (vs, vs_mid_faces):
chamfer_distance_a, chamfer_distance_a_nn = ChamferDistance()(vs_.unsqueeze(0), seg[0].unsqueeze(0), bidirectional=False)
# nn_sanity = slow_nn(vs_mid_faces, seg[0])
labels_all.append(seg[1][chamfer_distance_a_nn.flatten()])
# for i in range(seg[1].min(), seg[1].max() + 1):
# mask = labels.eq(i)
# if mask.any():
# split[i] = faces[mask]
# else:
# faces_split[i] = None
return labels_all
|