KBaba7's picture
Update app.py
5f5a51c verified
import os
import subprocess
import streamlit as st
from huggingface_hub import snapshot_download
import subprocess
# Recompile llama.cpp before running
subprocess.run(["make", "clean"], cwd="/home/user/app/llama.cpp", check=True)
subprocess.run(["make"], cwd="/home/user/app/llama.cpp", check=True)
def check_directory_path(directory_name: str) -> str:
if os.path.exists(directory_name):
path = os.path.abspath(directory_name)
return str(path)
# Define quantization types
QUANT_TYPES = [
"Q2_K", "Q3_K_M", "Q3_K_S", "Q4_K_M", "Q4_K_S",
"Q5_K_M", "Q5_K_S", "Q6_K"
]
model_dir_path=check_directory_path("llama.cpp")
def download_model(hf_model_name, output_dir="models"):
"""
Downloads a Hugging Face model and saves it locally.
"""
st.write(f"πŸ“₯ Downloading `{hf_model_name}` from Hugging Face...")
os.makedirs(output_dir, exist_ok=True)
snapshot_download(repo_id=hf_model_name, local_dir=output_dir, local_dir_use_symlinks=False)
st.success("βœ… Model downloaded successfully!")
def convert_to_gguf(model_dir, output_file):
"""
Converts a Hugging Face model to GGUF format.
"""
st.write(f"πŸ”„ Converting `{model_dir}` to GGUF format...")
os.makedirs(os.path.dirname(output_file), exist_ok=True)
st.write(model_dir_path)
cmd = [
"python3", f"{model_dir_path}/convert_hf_to_gguf.py", model_dir,
"--outtype", "f16", "--outfile", output_file
]
process = subprocess.run(cmd, text=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if process.returncode == 0:
st.success(f"βœ… Conversion complete: `{output_file}`")
else:
st.error(f"❌ Conversion failed: {process.stderr}")
def quantize_llama(model_path, quantized_output_path, quant_type):
"""
Quantizes a GGUF model.
"""
st.write(f"⚑ Quantizing `{model_path}` with `{quant_type}` precision...")
os.makedirs(os.path.dirname(quantized_output_path), exist_ok=True)
quantize_path = f"{model_dir_path}/build/bin/llama-quantize"
subprocess.run(["chmod", "+x", quantize_path], check=True)
cmd = [
f"{model_dir_path}/build/bin/llama-quantize",
model_path,
quantized_output_path,
quant_type
]
process = subprocess.run(cmd, text=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if process.returncode == 0:
st.success(f"βœ… Quantized model saved at `{quantized_output_path}`")
else:
st.error(f"❌ Quantization failed: {process.stderr}")
def automate_llama_quantization(hf_model_name, quant_type):
"""
Orchestrates the entire quantization process.
"""
output_dir = "models"
gguf_file = os.path.join(output_dir, f"{hf_model_name.replace('/', '_')}.gguf")
quantized_file = gguf_file.replace(".gguf", f"-{quant_type}.gguf")
progress_bar = st.progress(0)
# Step 1: Download
st.write("### Step 1: Downloading Model")
download_model(hf_model_name, output_dir)
progress_bar.progress(33)
# Step 2: Convert to GGUF
st.write("### Step 2: Converting Model to GGUF Format")
convert_to_gguf(output_dir, gguf_file)
progress_bar.progress(66)
# Step 3: Quantize Model
st.write("### Step 3: Quantizing Model")
quantize_llama(gguf_file, quantized_file, quant_type.lower())
progress_bar.progress(100)
st.success(f"πŸŽ‰ All steps completed! Quantized model available at: `{quantized_file}`")
return quantized_file
# Streamlit UI
st.title("πŸ¦™ LLaMA Model Quantization (llama.cpp)")
hf_model_name = st.text_input("Enter Hugging Face Model Name", "Qwen/Qwen2.5-1.5B")
quant_type = st.selectbox("Select Quantization Type", QUANT_TYPES)
start_button = st.button("πŸš€ Start Quantization")
if start_button:
with st.spinner("Processing..."):
quantized_model_path = automate_llama_quantization(hf_model_name, quant_type)
if quantized_model_path:
with open(quantized_model_path, "rb") as f:
st.download_button("⬇️ Download Quantized Model", f, file_name=os.path.basename(quantized_model_path))