Spaces:
Running
Running
void llama_set_k_shift(struct llama_context & lctx) { | |
const int64_t kv_size = lctx.kv_self.size; | |
assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer)); | |
int32_t * data = (int32_t *) lctx.inp_K_shift->data; | |
for (int i = 0; i < kv_size; ++i) { | |
data[i] = lctx.kv_self.cells[i].delta; | |
} | |
} | |
void llama_set_s_copy(struct llama_context & lctx) { | |
const int64_t kv_size = lctx.kv_self.size; | |
assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer)); | |
int32_t * data = (int32_t *) lctx.inp_s_copy->data; | |
for (int i = 0; i < kv_size; ++i) { | |
data[i] = lctx.kv_self.cells[i].src; | |
} | |
} | |
// llama input | |
static int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) { | |
// TODO move to hparams if a T5 variant appears that uses a different value | |
const int64_t max_distance = 128; | |
if (bidirectional) { | |
n_buckets >>= 1; | |
} | |
const int64_t max_exact = n_buckets >> 1; | |
int32_t relative_position = x - y; | |
int32_t relative_bucket = 0; | |
if (bidirectional) { | |
relative_bucket += (relative_position > 0) * n_buckets; | |
relative_position = abs(relative_position); | |
} else { | |
relative_position = -std::min<int32_t>(relative_position, 0); | |
} | |
int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact)); | |
relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1); | |
relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large); | |
return relative_bucket; | |
} | |
void llama_set_inputs(llama_context & lctx, const llama_ubatch & ubatch) { | |
// | |
// set input data | |
// | |
const auto & hparams = lctx.model.hparams; | |
const auto & cparams = lctx.cparams; | |
const auto & kv_self = lctx.kv_self; | |
if (ubatch.token) { | |
const int64_t n_tokens = ubatch.n_tokens; | |
ggml_backend_tensor_set(lctx.inp_tokens, ubatch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens)); | |
} | |
if (ubatch.embd) { | |
const int64_t n_embd = hparams.n_embd; | |
const int64_t n_tokens = ubatch.n_tokens; | |
ggml_backend_tensor_set(lctx.inp_embd, ubatch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd)); | |
} | |
if (ubatch.pos && lctx.inp_pos) { | |
const int64_t n_tokens = ubatch.n_tokens; | |
auto n_pos = lctx.n_pos_per_token; | |
ggml_backend_tensor_set(lctx.inp_pos, ubatch.pos, 0, n_tokens*n_pos*ggml_element_size(lctx.inp_pos)); | |
} | |
if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) { | |
//GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs"); | |
if (!lctx.inp_out_ids) { | |
LLAMA_LOG_WARN("%s: 'lctx.inp_out_ids' is not created\n", __func__); | |
} else { | |
const int64_t n_tokens = ubatch.n_tokens; | |
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer)); | |
int32_t * data = (int32_t *) lctx.inp_out_ids->data; | |
if (lctx.n_outputs == n_tokens) { | |
for (int i = 0; i < n_tokens; ++i) { | |
data[i] = i; | |
} | |
} else if (ubatch.output) { | |
int32_t n_outputs = 0; | |
for (int i = 0; i < n_tokens; ++i) { | |
if (ubatch.output[i]) { | |
data[n_outputs++] = i; | |
} | |
} | |
// the graph needs to have been passed the correct number of outputs | |
GGML_ASSERT(lctx.n_outputs == n_outputs); | |
} else if (lctx.n_outputs == 1) { | |
// only keep last output | |
data[0] = n_tokens - 1; | |
} else { | |
GGML_ASSERT(lctx.n_outputs == 0); | |
} | |
} | |
} | |
GGML_ASSERT( | |
// (!a || b) is a logical implication (a -> b) | |
// !hparams.causal_attn -> !cparams.causal_attn | |
(hparams.causal_attn || !cparams.causal_attn) && | |
"causal attention is not supported by this model" | |
); | |
if (lctx.inp_KQ_mask || lctx.inp_KQ_mask_swa) { | |
// NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache. | |
if (cparams.causal_attn && !lctx.is_encoding) { | |
const int64_t n_kv = kv_self.n; | |
const int64_t n_tokens = ubatch.n_tokens; | |
const int64_t n_seq_tokens = ubatch.n_seq_tokens; | |
const int64_t n_seqs = ubatch.n_seqs; | |
float * data = nullptr; | |
float * data_swa = nullptr; | |
if (lctx.inp_KQ_mask) { | |
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer)); | |
data = (float *) lctx.inp_KQ_mask->data; | |
} | |
if (lctx.inp_KQ_mask_swa) { | |
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_swa->buffer)); | |
data_swa = (float *) lctx.inp_KQ_mask_swa->data; | |
} | |
// For causal attention, use only the previous KV cells | |
// of the correct sequence for each token of the ubatch. | |
// It's assumed that if a token in the batch has multiple sequences, they are equivalent. | |
for (int h = 0; h < 1; ++h) { | |
for (int s = 0; s < n_seqs; ++s) { | |
const llama_seq_id seq_id = ubatch.seq_id[s][0]; | |
for (int j = 0; j < n_seq_tokens; ++j) { | |
const llama_pos pos = ubatch.pos[s*n_seq_tokens + j]; | |
for (int i = 0; i < n_kv; ++i) { | |
float f; | |
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) { | |
f = -INFINITY; | |
} else { | |
if (hparams.use_alibi) { | |
f = -std::abs(kv_self.cells[i].pos - pos); | |
} else { | |
f = 0.0f; | |
} | |
} | |
if (data) { | |
data[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f; | |
} | |
// may need to cut off old tokens for sliding window | |
if (data_swa) { | |
if (pos - kv_self.cells[i].pos >= (int32_t)hparams.n_swa) { | |
f = -INFINITY; | |
} | |
data_swa[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f; | |
} | |
} | |
} | |
} | |
if (data) { | |
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) { | |
for (int j = 0; j < n_kv; ++j) { | |
data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY; | |
} | |
} | |
} | |
if (data_swa) { | |
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) { | |
for (int j = 0; j < n_kv; ++j) { | |
data_swa[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY; | |
} | |
} | |
} | |
} | |
} else { | |
const int64_t n_tokens = ubatch.n_tokens; | |
const int64_t n_seq_tokens = ubatch.n_seq_tokens; | |
const int64_t n_seqs = ubatch.n_seqs; | |
// when using kv cache, the mask needs to match the kv cache size | |
const int64_t n_stride = hparams.causal_attn && !lctx.is_encoding ? kv_self.n : n_tokens; | |
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer)); | |
float * data = (float *) lctx.inp_KQ_mask->data; | |
for (int h = 0; h < 1; ++h) { | |
for (int s1 = 0; s1 < n_seqs; ++s1) { | |
const llama_seq_id seq_id = ubatch.seq_id[s1][0]; | |
for (int j = 0; j < n_seq_tokens; ++j) { | |
const int32_t tj = s1*n_seq_tokens + j; | |
for (int s0 = 0; s0 < n_seqs; ++s0) { | |
for (int i = 0; i < n_seq_tokens; ++i) { | |
const int32_t ti = s0*n_seq_tokens + i; | |
float f = -INFINITY; | |
for (int s = 0; s < ubatch.n_seq_id[s0]; ++s) { | |
if (ubatch.seq_id[s0][s] == seq_id) { | |
if (hparams.use_alibi) { | |
f = -std::abs(ubatch.pos[ti] - ubatch.pos[tj]); | |
} else { | |
f = 0.0f; | |
} | |
break; | |
} | |
} | |
data[h*(n_tokens*n_tokens) + tj*n_stride + ti] = f; | |
} | |
} | |
for (int i = n_tokens; i < n_stride; ++i) { | |
data[h*(n_tokens*n_tokens) + tj*n_stride + i] = -INFINITY; | |
} | |
} | |
} | |
} | |
} | |
} | |
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) { | |
const int64_t n_tokens = ubatch.n_tokens; | |
const int64_t n_seq_tokens = ubatch.n_seq_tokens; | |
const int64_t n_seqs = ubatch.n_seqs; | |
GGML_ASSERT(lctx.inp_mean); | |
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer)); | |
float * data = (float *) lctx.inp_mean->data; | |
memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean)); | |
std::vector<uint64_t> sum(n_tokens, 0); | |
for (int s = 0; s < n_seqs; ++s) { | |
const llama_seq_id seq_id = ubatch.seq_id[s][0]; | |
// TODO: adapt limits to n_seqs when ubatch.equal_seqs is true | |
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN"); | |
sum[seq_id] += ubatch.n_seq_tokens; | |
} | |
std::vector<float> div(n_tokens, 0.0f); | |
for (int i = 0; i < n_tokens; ++i) { | |
const uint64_t s = sum[i]; | |
if (s > 0) { | |
div[i] = 1.0f/float(s); | |
} | |
} | |
for (int s = 0; s < n_seqs; ++s) { | |
const llama_seq_id seq_id = ubatch.seq_id[s][0]; | |
for (int i = 0; i < n_seq_tokens; ++i) { | |
data[seq_id*n_tokens + s*n_seq_tokens + i] = div[seq_id]; | |
} | |
} | |
} | |
if (cparams.embeddings && ( | |
cparams.pooling_type == LLAMA_POOLING_TYPE_CLS || | |
cparams.pooling_type == LLAMA_POOLING_TYPE_RANK)) { | |
const int64_t n_tokens = ubatch.n_tokens; | |
const int64_t n_seq_tokens = ubatch.n_seq_tokens; | |
const int64_t n_seqs = ubatch.n_seqs; | |
GGML_ASSERT(lctx.inp_cls); | |
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer)); | |
uint32_t * data = (uint32_t *) lctx.inp_cls->data; | |
memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls)); | |
for (int s = 0; s < n_seqs; ++s) { | |
const llama_seq_id seq_id = ubatch.seq_id[s][0]; | |
// TODO: adapt limits to n_seqs when ubatch.equal_seqs is true | |
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS or RANK"); | |
for (int i = 0; i < n_seq_tokens; ++i) { | |
const llama_pos pos = ubatch.pos[s*n_seq_tokens + i]; | |
if (pos == 0) { | |
data[seq_id] = s*n_seq_tokens + i; | |
} | |
} | |
} | |
} | |
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) { | |
const int64_t n_tokens = ubatch.n_tokens; | |
const int64_t n_seq_tokens = ubatch.n_seq_tokens; | |
const int64_t n_seqs = ubatch.n_seqs; | |
GGML_ASSERT(lctx.inp_cls); | |
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer)); | |
uint32_t * data = (uint32_t *) lctx.inp_cls->data; | |
memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls)); | |
std::vector<int> last_pos(n_tokens, -1); | |
std::vector<int> last_row(n_tokens, -1); | |
for (int s = 0; s < n_seqs; ++s) { | |
const llama_seq_id seq_id = ubatch.seq_id[s][0]; | |
// TODO: adapt limits to n_seqs when ubatch.equal_seqs is true | |
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST"); | |
for (int i = 0; i < n_seq_tokens; ++i) { | |
const llama_pos pos = ubatch.pos[s*n_seq_tokens + i]; | |
if (pos >= last_pos[seq_id]) { | |
last_pos[seq_id] = pos; | |
last_row[seq_id] = s*n_seq_tokens + i; | |
} | |
} | |
} | |
for (int i = 0; i < n_tokens; ++i) { | |
if (last_row[i] >= 0) { | |
data[i] = last_row[i]; | |
} | |
} | |
} | |
if (kv_self.recurrent) { | |
const int64_t n_kv = kv_self.n; | |
if (lctx.inp_s_mask) { | |
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer)); | |
float * data = (float *) lctx.inp_s_mask->data; | |
// clear unused states | |
for (int i = 0; i < n_kv; ++i) { | |
const uint32_t cell_id = i + kv_self.head; | |
llama_kv_cell & kv_cell = lctx.kv_self.cells[cell_id]; | |
data[i] = (float) (kv_cell.src >= 0); | |
// only clear once | |
if (kv_cell.src < 0) { | |
kv_cell.src = cell_id; | |
} | |
} | |
} | |
if (lctx.inp_s_copy) { | |
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer)); | |
int32_t * data = (int32_t *) lctx.inp_s_copy->data; | |
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n | |
for (uint32_t i = 0; i < n_kv; ++i) { | |
const uint32_t cell_id = i + kv_self.head; | |
llama_kv_cell & kv_cell = lctx.kv_self.cells[cell_id]; | |
// prevent out-of-bound sources | |
if (kv_cell.src < 0 || (uint32_t) kv_cell.src >= kv_self.size) { | |
kv_cell.src = cell_id; | |
} | |
data[i] = kv_cell.src; | |
// ensure copy only happens once | |
if (kv_cell.src != (int32_t) cell_id) { | |
kv_cell.src = cell_id; | |
} | |
} | |
} | |
} | |
if (lctx.inp_pos_bucket) { | |
const int64_t n_tokens = ubatch.n_tokens; | |
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_pos_bucket->buffer)); | |
GGML_ASSERT(!ubatch.equal_seqs); // TODO: use ubatch.n_seqs instead of failing | |
int32_t * data = (int32_t *) lctx.inp_pos_bucket->data; | |
if (!lctx.is_encoding) { | |
const int64_t n_kv = kv_self.n; | |
for (int h = 0; h < 1; ++h) { | |
for (int j = 0; j < n_tokens; ++j) { | |
for (int i = 0; i < n_kv; ++i) { | |
data[h*(n_kv*n_tokens) + j*n_kv + i] = llama_relative_position_bucket(lctx.kv_self.cells[i].pos, ubatch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding); | |
} | |
} | |
} | |
} else { | |
for (int h = 0; h < 1; ++h) { | |
for (int j = 0; j < n_tokens; ++j) { | |
for (int i = 0; i < n_tokens; ++i) { | |
data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch.pos[i], ubatch.pos[j], hparams.n_rel_attn_bkts, lctx.is_encoding); | |
} | |
} | |
} | |
} | |
} | |
if (!lctx.is_encoding && lctx.inp_embd_enc) { | |
assert(lctx.inp_embd_enc->type == GGML_TYPE_F32); | |
assert((size_t) ggml_nelements(lctx.inp_embd_enc) == lctx.embd_enc.size()); | |
ggml_backend_tensor_set(lctx.inp_embd_enc, lctx.embd_enc.data(), 0, ggml_nbytes(lctx.inp_embd_enc)); | |
} | |
if (!lctx.is_encoding && lctx.inp_KQ_mask_cross) { | |
const int64_t n_output_enc = lctx.embd_enc.size() / hparams.n_embd; | |
const int64_t n_tokens = ubatch.n_tokens; | |
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask_cross->buffer)); | |
GGML_ASSERT(!ubatch.equal_seqs); // TODO: use ubatch.n_seqs instead of failing | |
float * data = (float *) lctx.inp_KQ_mask_cross->data; | |
for (int h = 0; h < 1; ++h) { | |
for (int j = 0; j < n_tokens; ++j) { | |
for (int i = 0; i < n_output_enc; ++i) { | |
float f = -INFINITY; | |
for (int s = 0; s < ubatch.n_seq_id[j]; ++s) { | |
const llama_seq_id seq_id = ubatch.seq_id[j][s]; | |
if (lctx.seq_ids_enc[i].find(seq_id) != lctx.seq_ids_enc[i].end()) { | |
f = 0.0f; | |
} | |
} | |
data[h*(n_output_enc*n_tokens) + j*n_output_enc + i] = f; | |
} | |
} | |
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) { | |
for (int j = 0; j < n_output_enc; ++j) { | |
data[h*(n_output_enc*n_tokens) + i*n_output_enc + j] = -INFINITY; | |
} | |
} | |
} | |
} | |
} | |
// llama output | |
size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs) { | |
const auto & cparams = lctx.cparams; | |
const auto & hparams = lctx.model.hparams; | |
const auto & vocab = lctx.model.vocab; | |
const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max); | |
const auto n_batch = cparams.n_batch; | |
const auto n_vocab = vocab.n_tokens(); | |
const auto n_embd = hparams.n_embd; | |
// TODO: use a per-batch flag for logits presence instead | |
const bool has_logits = !cparams.embeddings; | |
const bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE); | |
const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0; | |
const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0; | |
if (lctx.output_ids.empty()) { | |
// init, never resized afterwards | |
lctx.output_ids.resize(n_batch); | |
} | |
const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output.get()) : 0; | |
const size_t new_size = (logits_size + embd_size) * sizeof(float); | |
// alloc only when more than the current capacity is required | |
// TODO: also consider shrinking the buffer | |
if (!lctx.buf_output || prev_size < new_size) { | |
if (lctx.buf_output) { | |
// This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark) | |
LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); | |
lctx.buf_output = nullptr; | |
lctx.logits = nullptr; | |
lctx.embd = nullptr; | |
} | |
auto * buft = ggml_backend_cpu_buffer_type(); | |
// try to use the host buffer of the device where the output tensor is allocated for faster transfer to system memory | |
auto * output_dev = lctx.model.dev_output(); | |
auto * output_dev_host_buft = output_dev ? ggml_backend_dev_host_buffer_type(output_dev) : nullptr; | |
if (output_dev_host_buft) { | |
buft = output_dev_host_buft; | |
} | |
lctx.buf_output.reset(ggml_backend_buft_alloc_buffer(buft, new_size)); | |
if (lctx.buf_output == nullptr) { | |
LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0)); | |
return 0; | |
} | |
} | |
float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output.get()); | |
lctx.logits = has_logits ? output_base : nullptr; | |
lctx.embd = has_embd ? output_base + logits_size : nullptr; | |
lctx.output_size = n_outputs_max; | |
lctx.logits_size = logits_size; | |
lctx.embd_size = embd_size; | |
// set all ids as invalid (negative) | |
std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1); | |
ggml_backend_buffer_clear(lctx.buf_output.get(), 0); | |
lctx.n_outputs = 0; | |
return n_outputs_max; | |
} | |
void llama_output_reorder(struct llama_context & ctx) { | |
std::vector<size_t> & out_ids = ctx.sbatch.out_ids; | |
if (!out_ids.empty()) { | |
const uint32_t n_vocab = ctx.model.vocab.n_tokens(); | |
const uint32_t n_embd = ctx.model.hparams.n_embd; | |
const int32_t n_outputs = ctx.n_outputs; | |
GGML_ASSERT((size_t) n_outputs == out_ids.size()); | |
// TODO: is there something more efficient which also minimizes swaps? | |
// selection sort, to minimize swaps (from https://en.wikipedia.org/wiki/Selection_sort) | |
for (int32_t i = 0; i < n_outputs - 1; ++i) { | |
int32_t j_min = i; | |
for (int32_t j = i + 1; j < n_outputs; ++j) { | |
if (out_ids[j] < out_ids[j_min]) { | |
j_min = j; | |
} | |
} | |
if (j_min == i) { continue; } | |
std::swap(out_ids[i], out_ids[j_min]); | |
if (ctx.logits_size > 0) { | |
for (uint32_t k = 0; k < n_vocab; k++) { | |
std::swap(ctx.logits[i*n_vocab + k], ctx.logits[j_min*n_vocab + k]); | |
} | |
} | |
if (ctx.embd_size > 0) { | |
for (uint32_t k = 0; k < n_embd; k++) { | |
std::swap(ctx.embd[i*n_embd + k], ctx.embd[j_min*n_embd + k]); | |
} | |
} | |
} | |
std::fill(ctx.output_ids.begin(), ctx.output_ids.end(), -1); | |
for (int32_t i = 0; i < n_outputs; ++i) { | |
ctx.output_ids[out_ids[i]] = i; | |
} | |
out_ids.clear(); | |
} | |
} | |
// | |
// interface implementation | |
// | |
void llama_free(struct llama_context * ctx) { | |
delete ctx; | |
} | |
uint32_t llama_n_ctx(const struct llama_context * ctx) { | |
return ctx->cparams.n_ctx; | |
} | |
uint32_t llama_n_batch(const struct llama_context * ctx) { | |
return ctx->cparams.n_batch; | |
} | |
uint32_t llama_n_ubatch(const struct llama_context * ctx) { | |
return ctx->cparams.n_ubatch; | |
} | |
uint32_t llama_n_seq_max(const struct llama_context * ctx) { | |
return ctx->kv_self.size; | |
} | |
const struct llama_model * llama_get_model(const struct llama_context * ctx) { | |
return &ctx->model; | |
} | |
enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) { | |
return ctx->cparams.pooling_type; | |
} | |
void llama_attach_threadpool( | |
struct llama_context * ctx, | |
ggml_threadpool_t threadpool, | |
ggml_threadpool_t threadpool_batch) { | |
ctx->threadpool = threadpool; | |
ctx->threadpool_batch = threadpool_batch ? threadpool_batch : threadpool; | |
} | |
void llama_detach_threadpool(struct llama_context * ctx) { | |
ctx->threadpool = nullptr; | |
ctx->threadpool_batch = nullptr; | |
} | |
void llama_set_n_threads(struct llama_context * ctx, int32_t n_threads, int32_t n_threads_batch) { | |
ctx->cparams.n_threads = n_threads; | |
ctx->cparams.n_threads_batch = n_threads_batch; | |
} | |
int32_t llama_n_threads(struct llama_context * ctx) { | |
return ctx->cparams.n_threads; | |
} | |
int32_t llama_n_threads_batch(struct llama_context * ctx) { | |
return ctx->cparams.n_threads_batch; | |
} | |
void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) { | |
ctx->abort_callback = abort_callback; | |
ctx->abort_callback_data = abort_callback_data; | |
for (auto & backend : ctx->backends) { | |
auto * reg = ggml_backend_dev_backend_reg(ggml_backend_get_device(backend.get())); | |
auto * set_abort_callback_fn = (ggml_backend_set_abort_callback_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_abort_callback"); | |
if (set_abort_callback_fn) { | |
set_abort_callback_fn(backend.get(), ctx->abort_callback, ctx->abort_callback_data); | |
} | |
} | |
} | |
void llama_set_embeddings(struct llama_context * ctx, bool embeddings) { | |
ctx->cparams.embeddings = embeddings; | |
} | |
void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) { | |
ctx->cparams.causal_attn = causal_attn; | |
} | |
void llama_synchronize(struct llama_context * ctx) { | |
ggml_backend_sched_synchronize(ctx->sched.get()); | |
// FIXME: if multiple single tokens are evaluated without a synchronization, | |
// the stats will be added to the prompt evaluation stats | |
// this should only happen when using batch size 1 to evaluate a batch | |
// add the evaluation to the stats | |
if (ctx->n_queued_tokens == 1) { | |
if (!ctx->cparams.no_perf) { | |
ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us; | |
} | |
ctx->n_eval++; | |
} else if (ctx->n_queued_tokens > 1) { | |
if (!ctx->cparams.no_perf) { | |
ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us; | |
} | |
ctx->n_p_eval += ctx->n_queued_tokens; | |
} | |
// get a more accurate load time, upon first eval | |
if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) { | |
ctx->t_load_us = ggml_time_us() - ctx->t_start_us; | |
ctx->has_evaluated_once = true; | |
} | |
ctx->n_queued_tokens = 0; | |
ctx->t_compute_start_us = 0; | |
} | |
float * llama_get_logits(struct llama_context * ctx) { | |
llama_synchronize(ctx); | |
// reorder logits for backward compatibility | |
// TODO: maybe deprecate this | |
llama_output_reorder(*ctx); | |
return ctx->logits; | |
} | |
float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) { | |
int32_t j = -1; | |
llama_synchronize(ctx); | |
try { | |
if (ctx->logits == nullptr) { | |
throw std::runtime_error("no logits"); | |
} | |
if (i < 0) { | |
j = ctx->n_outputs + i; | |
if (j < 0) { | |
throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs)); | |
} | |
} else if ((size_t) i >= ctx->output_ids.size()) { | |
throw std::runtime_error(format("out of range [0, %zu)", ctx->output_ids.size())); | |
} else { | |
j = ctx->output_ids[i]; | |
} | |
if (j < 0) { | |
throw std::runtime_error(format("batch.logits[%d] != true", i)); | |
} | |
if (j >= ctx->n_outputs) { | |
// This should not happen | |
throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs)); | |
} | |
return ctx->logits + j*ctx->model.vocab.n_tokens(); | |
} catch (const std::exception & err) { | |
LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what()); | |
GGML_ABORT("fatal error"); | |
return nullptr; | |
} | |
} | |
float * llama_get_embeddings(struct llama_context * ctx) { | |
llama_synchronize(ctx); | |
// reorder embeddings for backward compatibility | |
// TODO: maybe deprecate this | |
llama_output_reorder(*ctx); | |
return ctx->embd; | |
} | |
float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) { | |
int32_t j = -1; | |
llama_synchronize(ctx); | |
try { | |
if (ctx->embd == nullptr) { | |
throw std::runtime_error("no embeddings"); | |
} | |
if (i < 0) { | |
j = ctx->n_outputs + i; | |
if (j < 0) { | |
throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs)); | |
} | |
} else if ((size_t) i >= ctx->output_ids.size()) { | |
throw std::runtime_error(format("out of range [0, %zu)", ctx->output_ids.size())); | |
} else { | |
j = ctx->output_ids[i]; | |
} | |
if (j < 0) { | |
throw std::runtime_error(format("batch.logits[%d] != true", i)); | |
} | |
if (j >= ctx->n_outputs) { | |
// This should not happen | |
throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs)); | |
} | |
return ctx->embd + j*ctx->model.hparams.n_embd; | |
} catch (const std::exception & err) { | |
LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what()); | |
GGML_ABORT("fatal error"); | |
return nullptr; | |
} | |
} | |
float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) { | |
llama_synchronize(ctx); | |
auto it = ctx->embd_seq.find(seq_id); | |
if (it == ctx->embd_seq.end()) { | |
return nullptr; | |
} | |
return it->second.data(); | |
} | |
// llama state API | |
// deprecated | |
size_t llama_get_state_size(struct llama_context * ctx) { | |
return llama_state_get_size(ctx); | |
} | |
// deprecated | |
size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) { | |
return llama_state_get_data(ctx, dst, -1); | |
} | |
// deprecated | |
size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) { | |
return llama_state_set_data(ctx, src, -1); | |
} | |
// deprecated | |
bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { | |
return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out); | |
} | |
// deprecated | |
bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { | |
return llama_state_save_file(ctx, path_session, tokens, n_token_count); | |
} | |
// TODO: replace all non-fatal assertions with returned errors or exceptions | |
struct llama_data_write { | |
virtual void write(const void * src, size_t size) = 0; | |
virtual void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) = 0; | |
virtual size_t get_size_written() = 0; | |
virtual ~llama_data_write() = default; | |
void write_string(const std::string & str) { | |
uint32_t str_size = str.size(); | |
write(&str_size, sizeof(str_size)); | |
write(str.data(), str_size); | |
} | |
void write_model_info(const struct llama_context * ctx) { | |
const std::string arch_str = llm_arch_name(ctx->model.arch); | |
write_string(arch_str); | |
// TODO: add more model-specific info which should prevent loading the session file if not identical | |
} | |
//void write_rng(const std::mt19937 & rng) { | |
// std::ostringstream rng_ss; | |
// rng_ss << rng; | |
// const std::string & rng_str = rng_ss.str(); | |
// write_string(rng_str); | |
//} | |
void write_output_ids(struct llama_context * ctx) { | |
llama_output_reorder(*ctx); | |
const uint32_t n_outputs = ctx->n_outputs; | |
std::vector<int32_t> output_pos; | |
const size_t n_batch = ctx->cparams.n_batch; | |
const auto & output_ids = ctx->output_ids; | |
GGML_ASSERT(n_outputs <= ctx->output_size); | |
output_pos.resize(n_outputs); | |
// build a more compact representation of the output ids | |
for (size_t i = 0; i < n_batch; ++i) { | |
// map an output id to a position in the batch | |
int32_t pos = output_ids[i]; | |
if (pos >= 0) { | |
GGML_ASSERT((uint32_t) pos < n_outputs); | |
output_pos[pos] = i; | |
} | |
} | |
write(&n_outputs, sizeof(n_outputs)); | |
if (n_outputs) { | |
write(output_pos.data(), n_outputs * sizeof(int32_t)); | |
} | |
} | |
void write_logits(const struct llama_context * ctx) { | |
const uint64_t logits_size = std::min((uint64_t) ctx->logits_size, (uint64_t) ctx->n_outputs * ctx->model.vocab.n_tokens()); | |
write(&logits_size, sizeof(logits_size)); | |
if (logits_size) { | |
write(ctx->logits, logits_size * sizeof(float)); | |
} | |
} | |
void write_embeddings(const struct llama_context * ctx) { | |
const uint64_t embeddings_size = std::min((uint64_t) ctx->embd_size, (uint64_t) ctx->n_outputs * ctx->model.hparams.n_embd); | |
write(&embeddings_size, sizeof(embeddings_size)); | |
if (embeddings_size) { | |
write(ctx->embd, embeddings_size * sizeof(float)); | |
} | |
} | |
void write_kv_cache_meta(const llama_kv_cache & kv_self, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) { | |
for (const auto & range : cell_ranges) { | |
for (uint32_t i = range.first; i < range.second; ++i) { | |
const auto & cell = kv_self.cells[i]; | |
const llama_pos pos = cell.pos; | |
const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0; | |
write(&pos, sizeof(pos)); | |
write(&n_seq_id, sizeof(n_seq_id)); | |
if (n_seq_id) { | |
for (auto seq_id : cell.seq_id) { | |
write(&seq_id, sizeof(seq_id)); | |
} | |
} | |
} | |
} | |
} | |
void write_kv_cache_data(const struct llama_context * ctx, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) { | |
const struct llama_kv_cache & kv_self = ctx->kv_self; | |
const struct llama_hparams & hparams = ctx->model.hparams; | |
const uint32_t v_trans = kv_self.v_trans ? 1 : 0; | |
const uint32_t n_layer = hparams.n_layer; | |
write(&v_trans, sizeof(v_trans)); | |
write(&n_layer, sizeof(n_layer)); | |
std::vector<uint8_t> tmp_buf; | |
// Iterate and write all the keys first, each row is a cell | |
// Get whole range at a time | |
for (uint32_t il = 0; il < n_layer; ++il) { | |
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); | |
// Write key type | |
const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type; | |
write(&k_type_i, sizeof(k_type_i)); | |
// Write row size of key | |
const uint64_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa); | |
write(&k_size_row, sizeof(k_size_row)); | |
// Read each range of cells of k_size length each into tmp_buf and write out | |
for (const auto & range : cell_ranges) { | |
const size_t range_size = range.second - range.first; | |
const size_t buf_size = range_size * k_size_row; | |
write_tensor_data(kv_self.k_l[il], range.first * k_size_row, buf_size); | |
} | |
} | |
if (!kv_self.v_trans) { | |
for (uint32_t il = 0; il < n_layer; ++il) { | |
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); | |
// Write value type | |
const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type; | |
write(&v_type_i, sizeof(v_type_i)); | |
// Write row size of value | |
const uint64_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa); | |
write(&v_size_row, sizeof(v_size_row)); | |
// Read each range of cells of v_size length each into tmp_buf and write out | |
for (const auto & range : cell_ranges) { | |
const size_t range_size = range.second - range.first; | |
const size_t buf_size = range_size * v_size_row; | |
write_tensor_data(kv_self.v_l[il], range.first * v_size_row, buf_size); | |
} | |
} | |
} else { | |
// When v is transposed, we also need the element size and get the element ranges from each row | |
const uint32_t kv_size = kv_self.size; | |
for (uint32_t il = 0; il < n_layer; ++il) { | |
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); | |
// Write value type | |
const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type; | |
write(&v_type_i, sizeof(v_type_i)); | |
// Write element size | |
const uint32_t v_size_el = ggml_type_size(kv_self.v_l[il]->type); | |
write(&v_size_el, sizeof(v_size_el)); | |
// Write GQA embedding size | |
write(&n_embd_v_gqa, sizeof(n_embd_v_gqa)); | |
// For each row, we get the element values of each cell | |
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { | |
// Read each range of cells of v_size_el length each into tmp_buf and write out | |
for (const auto & range : cell_ranges) { | |
const size_t range_size = range.second - range.first; | |
const size_t src_offset = (range.first + j * kv_size) * v_size_el; | |
const size_t buf_size = range_size * v_size_el; | |
write_tensor_data(kv_self.v_l[il], src_offset, buf_size); | |
} | |
} | |
} | |
} | |
} | |
void write_kv_cache(const struct llama_context * ctx, llama_seq_id seq_id = -1) { | |
const struct llama_kv_cache & kv_self = ctx->kv_self; | |
std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive | |
uint32_t cell_count = 0; | |
// Count the number of cells with the specified seq_id | |
// Find all the ranges of cells with this seq id (or all, when -1) | |
uint32_t cell_range_begin = kv_self.size; | |
for (uint32_t i = 0; i < kv_self.size; ++i) { | |
const auto & cell = kv_self.cells[i]; | |
if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) { | |
++cell_count; | |
if (cell_range_begin == kv_self.size) { | |
cell_range_begin = i; | |
} | |
} else { | |
if (cell_range_begin != kv_self.size) { | |
cell_ranges.emplace_back(cell_range_begin, i); | |
cell_range_begin = kv_self.size; | |
} | |
} | |
} | |
if (cell_range_begin != kv_self.size) { | |
cell_ranges.emplace_back(cell_range_begin, kv_self.size); | |
} | |
// DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count | |
uint32_t cell_count_check = 0; | |
for (const auto & range : cell_ranges) { | |
cell_count_check += range.second - range.first; | |
} | |
GGML_ASSERT(cell_count == cell_count_check); | |
write(&cell_count, sizeof(cell_count)); | |
write_kv_cache_meta(kv_self, cell_ranges, seq_id); | |
write_kv_cache_data(ctx, cell_ranges); | |
} | |
}; | |
struct llama_data_read { | |
virtual const uint8_t * read(size_t size) = 0; | |
virtual void read_to(void * dst, size_t size) = 0; | |
virtual size_t get_size_read() = 0; | |
virtual ~llama_data_read() = default; | |
void read_string(std::string & str) { | |
uint32_t str_size; | |
read_to(&str_size, sizeof(str_size)); | |
str.assign((const char *) read(str_size), str_size); | |
} | |
// validate model information | |
void read_model_info(const struct llama_context * ctx) { | |
const std::string cur_arch_str = llm_arch_name(ctx->model.arch); | |
std::string arch_str; | |
read_string(arch_str); | |
if (cur_arch_str != arch_str) { | |
throw std::runtime_error(format("wrong model arch: '%s' instead of '%s'", arch_str.c_str(), cur_arch_str.c_str())); | |
} | |
// TODO: add more info which needs to be identical but which is not verified otherwise | |
} | |
//void read_rng(std::mt19937 & rng) { | |
// std::string rng_str; | |
// read_string(rng_str); | |
// std::istringstream rng_ss(rng_str); | |
// rng_ss >> rng; | |
// if (rng_ss.fail()) { | |
// throw std::runtime_error("failed to load RNG state"); | |
// } | |
//} | |
void read_output_ids(struct llama_context * ctx) { | |
std::vector<int32_t> output_pos; | |
uint32_t n_outputs; | |
read_to(&n_outputs, sizeof(n_outputs)); | |
if (n_outputs > llama_output_reserve(*ctx, n_outputs)) { | |
throw std::runtime_error("could not reserve outputs"); | |
} | |
if (n_outputs) { | |
output_pos.resize(n_outputs); | |
read_to(output_pos.data(), n_outputs * sizeof(int32_t)); | |
for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) { | |
int32_t id = output_pos[i]; | |
if ((uint32_t) id >= ctx->cparams.n_batch) { | |
throw std::runtime_error(format("invalid output id, %d does not fit in batch size of %u", id, ctx->cparams.n_batch)); | |
} | |
ctx->output_ids[id] = i; | |
} | |
ctx->n_outputs = n_outputs; | |
} | |
} | |
void read_logits(struct llama_context * ctx) { | |
uint64_t logits_size; | |
read_to(&logits_size, sizeof(logits_size)); | |
if (ctx->logits_size < logits_size) { | |
throw std::runtime_error("logits buffer too small"); | |
} | |
if (logits_size) { | |
read_to(ctx->logits, logits_size * sizeof(float)); | |
} | |
} | |
void read_embeddings(struct llama_context * ctx) { | |
uint64_t embeddings_size; | |
read_to(&embeddings_size, sizeof(embeddings_size)); | |
if (ctx->embd_size < embeddings_size) { | |
throw std::runtime_error("embeddings buffer too small"); | |
} | |
if (embeddings_size) { | |
read_to(ctx->embd, embeddings_size * sizeof(float)); | |
} | |
} | |
bool read_kv_cache_meta(struct llama_context * ctx, uint32_t cell_count, llama_seq_id dest_seq_id = -1) { | |
struct llama_kv_cache & kv_self = ctx->kv_self; | |
if (dest_seq_id != -1) { | |
// single sequence | |
llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1); | |
llama_ubatch batch = ctx->sbatch.reserve_ubatch(cell_count, /* has_embd */ false); | |
batch.n_tokens = cell_count; | |
batch.n_seq_tokens = cell_count; | |
batch.n_seqs = 1; | |
for (uint32_t i = 0; i < cell_count; ++i) { | |
llama_pos pos; | |
uint32_t n_seq_id; | |
read_to(&pos, sizeof(pos)); | |
read_to(&n_seq_id, sizeof(n_seq_id)); | |
if (n_seq_id != 0) { | |
LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__); | |
return false; | |
} | |
batch.pos[i] = pos; | |
} | |
batch.n_seq_id[0] = 1; | |
batch.seq_id[0] = &dest_seq_id; | |
if (!llama_kv_cache_find_slot(kv_self, batch)) { | |
LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__); | |
return false; | |
} | |
// DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values) | |
// Assume that this is one contiguous block of cells | |
GGML_ASSERT(kv_self.head + cell_count <= kv_self.size); | |
GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]); | |
GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]); | |
GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id)); | |
GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id)); | |
} else { | |
// whole KV cache restore | |
if (cell_count > kv_self.size) { | |
LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__); | |
return false; | |
} | |
llama_kv_cache_clear(kv_self); | |
for (uint32_t i = 0; i < cell_count; ++i) { | |
llama_kv_cell & cell = kv_self.cells[i]; | |
llama_pos pos; | |
uint32_t n_seq_id; | |
read_to(&pos, sizeof(pos)); | |
read_to(&n_seq_id, sizeof(n_seq_id)); | |
cell.pos = pos; | |
for (uint32_t j = 0; j < n_seq_id; ++j) { | |
llama_seq_id seq_id; | |
read_to(&seq_id, sizeof(seq_id)); | |
if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) { | |
LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx)); | |
return false; | |
} | |
cell.seq_id.insert(seq_id); | |
if (kv_self.recurrent) { | |
int32_t & tail = kv_self.cells[seq_id].tail; | |
if (tail != -1) { | |
LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail); | |
return false; | |
} | |
tail = i; | |
} | |
} | |
} | |
kv_self.head = 0; | |
kv_self.used = cell_count; | |
} | |
if (kv_self.recurrent) { | |
for (uint32_t i = 0; i < cell_count; ++i) { | |
uint32_t cell_id = kv_self.head + i; | |
// make sure the recurrent states will keep their restored state | |
kv_self.cells[cell_id].src = cell_id; | |
} | |
} | |
return true; | |
} | |
bool read_kv_cache_data(struct llama_context * ctx, uint32_t cell_count) { | |
const struct llama_hparams & hparams = ctx->model.hparams; | |
struct llama_kv_cache & kv_self = ctx->kv_self; | |
uint32_t v_trans; | |
uint32_t n_layer; | |
read_to(&v_trans, sizeof(v_trans)); | |
read_to(&n_layer, sizeof(n_layer)); | |
if (n_layer != hparams.n_layer) { | |
LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer); | |
return false; | |
} | |
if (cell_count > kv_self.size) { | |
LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, kv_self.size); | |
return false; | |
} | |
if (kv_self.v_trans != (bool) v_trans) { | |
LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__); | |
return false; | |
} | |
// For each layer, read the keys for each cell, one row is one cell, read as one contiguous block | |
for (uint32_t il = 0; il < n_layer; ++il) { | |
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il) + hparams.n_embd_k_s(); | |
// Read type of key | |
int32_t k_type_i_ref; | |
read_to(&k_type_i_ref, sizeof(k_type_i_ref)); | |
const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type; | |
if (k_type_i != k_type_i_ref) { | |
LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il); | |
return false; | |
} | |
// Read row size of key | |
uint64_t k_size_row_ref; | |
read_to(&k_size_row_ref, sizeof(k_size_row_ref)); | |
const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa); | |
if (k_size_row != k_size_row_ref) { | |
LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il); | |
return false; | |
} | |
if (cell_count) { | |
// Read and set the keys for the whole cell range | |
ggml_backend_tensor_set(kv_self.k_l[il], read(cell_count * k_size_row), kv_self.head * k_size_row, cell_count * k_size_row); | |
} | |
} | |
if (!kv_self.v_trans) { | |
for (uint32_t il = 0; il < n_layer; ++il) { | |
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); | |
// Read type of value | |
int32_t v_type_i_ref; | |
read_to(&v_type_i_ref, sizeof(v_type_i_ref)); | |
const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type; | |
if (v_type_i != v_type_i_ref) { | |
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); | |
return false; | |
} | |
// Read row size of value | |
uint64_t v_size_row_ref; | |
read_to(&v_size_row_ref, sizeof(v_size_row_ref)); | |
const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa); | |
if (v_size_row != v_size_row_ref) { | |
LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il); | |
return false; | |
} | |
if (cell_count) { | |
// Read and set the values for the whole cell range | |
ggml_backend_tensor_set(kv_self.v_l[il], read(cell_count * v_size_row), kv_self.head * v_size_row, cell_count * v_size_row); | |
} | |
} | |
} else { | |
// For each layer, read the values for each cell (transposed) | |
for (uint32_t il = 0; il < n_layer; ++il) { | |
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il) + hparams.n_embd_v_s(); | |
// Read type of value | |
int32_t v_type_i_ref; | |
read_to(&v_type_i_ref, sizeof(v_type_i_ref)); | |
const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type; | |
if (v_type_i != v_type_i_ref) { | |
LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); | |
return false; | |
} | |
// Read element size of value | |
uint32_t v_size_el_ref; | |
read_to(&v_size_el_ref, sizeof(v_size_el_ref)); | |
const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type); | |
if (v_size_el != v_size_el_ref) { | |
LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il); | |
return false; | |
} | |
// Read GQA embedding size | |
uint32_t n_embd_v_gqa_ref; | |
read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref)); | |
if (n_embd_v_gqa != n_embd_v_gqa_ref) { | |
LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il); | |
return false; | |
} | |
if (cell_count) { | |
// For each row in the transposed matrix, read the values for the whole cell range | |
for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { | |
const size_t dst_offset = (kv_self.head + j * kv_self.size) * v_size_el; | |
ggml_backend_tensor_set(kv_self.v_l[il], read(cell_count * v_size_el), dst_offset, cell_count * v_size_el); | |
} | |
} | |
} | |
} | |
return true; | |
} | |
void read_kv_cache(struct llama_context * ctx, llama_seq_id seq_id = -1) { | |
uint32_t cell_count; | |
read_to(&cell_count, sizeof(cell_count)); | |
bool res = read_kv_cache_meta(ctx, cell_count, seq_id) && read_kv_cache_data(ctx, cell_count); | |
if (!res) { | |
if (seq_id == -1) { | |
llama_kv_cache_clear(ctx); | |
} else { | |
llama_kv_cache_seq_rm(ctx, seq_id, -1, -1); | |
} | |
throw std::runtime_error("failed to restore kv cache"); | |
} | |
} | |
}; | |
struct llama_data_write_dummy : llama_data_write { | |
size_t size_written = 0; | |
llama_data_write_dummy() {} | |
void write(const void * /* src */, size_t size) override { | |
size_written += size; | |
} | |
void write_tensor_data(const struct ggml_tensor * /* tensor */, size_t /* offset */, size_t size) override { | |
size_written += size; | |
} | |
size_t get_size_written() override { | |
return size_written; | |
} | |
}; | |
struct llama_data_write_buffer : llama_data_write { | |
uint8_t * ptr; | |
size_t buf_size = 0; | |
size_t size_written = 0; | |
llama_data_write_buffer(uint8_t * p, size_t len) : ptr(p), buf_size(len) {} | |
void write(const void * src, size_t size) override { | |
if (size > buf_size) { | |
throw std::runtime_error("unexpectedly reached end of buffer"); | |
} | |
memcpy(ptr, src, size); | |
ptr += size; | |
size_written += size; | |
buf_size -= size; | |
} | |
void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) override { | |
if (size > buf_size) { | |
throw std::runtime_error("unexpectedly reached end of buffer"); | |
} | |
ggml_backend_tensor_get(tensor, ptr, offset, size); | |
ptr += size; | |
size_written += size; | |
buf_size -= size; | |
} | |
size_t get_size_written() override { | |
return size_written; | |
} | |
}; | |
struct llama_data_read_buffer : llama_data_read { | |
const uint8_t * ptr; | |
size_t buf_size = 0; | |
size_t size_read = 0; | |
llama_data_read_buffer(const uint8_t * p, size_t len) : ptr(p), buf_size(len) {} | |
const uint8_t * read(size_t size) override { | |
const uint8_t * base_ptr = ptr; | |
if (size > buf_size) { | |
throw std::runtime_error("unexpectedly reached end of buffer"); | |
} | |
ptr += size; | |
size_read += size; | |
buf_size -= size; | |
return base_ptr; | |
} | |
void read_to(void * dst, size_t size) override { | |
memcpy(dst, read(size), size); | |
} | |
size_t get_size_read() override { | |
return size_read; | |
} | |
}; | |
struct llama_data_write_file : llama_data_write { | |
llama_file * file; | |
size_t size_written = 0; | |
std::vector<uint8_t> temp_buffer; | |
llama_data_write_file(llama_file * f) : file(f) {} | |
void write(const void * src, size_t size) override { | |
file->write_raw(src, size); | |
size_written += size; | |
} | |
void write_tensor_data(const struct ggml_tensor * tensor, size_t offset, size_t size) override { | |
temp_buffer.resize(size); | |
ggml_backend_tensor_get(tensor, temp_buffer.data(), offset, size); | |
write(temp_buffer.data(), temp_buffer.size()); | |
} | |
size_t get_size_written() override { | |
return size_written; | |
} | |
}; | |
struct llama_data_read_file : llama_data_read { | |
llama_file * file; | |
size_t size_read = 0; | |
std::vector<uint8_t> temp_buffer; | |
llama_data_read_file(llama_file * f) : file(f) {} | |
void read_to(void * dst, size_t size) override { | |
file->read_raw(dst, size); | |
size_read += size; | |
} | |
const uint8_t * read(size_t size) override { | |
temp_buffer.resize(size); | |
read_to(temp_buffer.data(), size); | |
return temp_buffer.data(); | |
} | |
size_t get_size_read() override { | |
return size_read; | |
} | |
}; | |
/** copy state data into either a buffer or file depending on the passed in context | |
* | |
* file context: | |
* llama_file file("/path", "wb"); | |
* llama_data_write_file data_ctx(&file); | |
* llama_state_get_data_internal(ctx, data_ctx); | |
* | |
* buffer context: | |
* std::vector<uint8_t> buf(max_size, 0); | |
* llama_data_write_buffer data_ctx(buf.data(), max_size); | |
* llama_state_get_data_internal(ctx, data_ctx); | |
* | |
*/ | |
static size_t llama_state_get_data_internal(struct llama_context * ctx, llama_data_write & data_ctx) { | |
llama_synchronize(ctx); | |
data_ctx.write_model_info(ctx); | |
// copy outputs | |
data_ctx.write_output_ids(ctx); | |
data_ctx.write_logits(ctx); | |
data_ctx.write_embeddings(ctx); | |
data_ctx.write_kv_cache(ctx); | |
return data_ctx.get_size_written(); | |
} | |
size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst, size_t size) { | |
llama_data_write_buffer data_ctx(dst, size); | |
try { | |
return llama_state_get_data_internal(ctx, data_ctx); | |
} catch (const std::exception & err) { | |
LLAMA_LOG_ERROR("%s: error saving state: %s\n", __func__, err.what()); | |
return 0; | |
} | |
} | |
// Returns the *actual* size of the state. | |
// Intended to be used when saving to state to a buffer. | |
size_t llama_state_get_size(struct llama_context * ctx) { | |
llama_data_write_dummy data_ctx; | |
try { | |
return llama_state_get_data_internal(ctx, data_ctx); | |
} catch (const std::exception & err) { | |
LLAMA_LOG_ERROR("%s: error getting state size: %s\n", __func__, err.what()); | |
return 0; | |
} | |
} | |
static size_t llama_state_set_data_internal(struct llama_context * ctx, llama_data_read & data_ctx) { | |
llama_synchronize(ctx); | |
data_ctx.read_model_info(ctx); | |
// set outputs | |
data_ctx.read_output_ids(ctx); | |
data_ctx.read_logits(ctx); | |
data_ctx.read_embeddings(ctx); | |
data_ctx.read_kv_cache(ctx); | |
return data_ctx.get_size_read(); | |
} | |
// Sets the state reading from the specified source address | |
size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src, size_t size) { | |
llama_data_read_buffer data_ctx(src, size); | |
try { | |
return llama_state_set_data_internal(ctx, data_ctx); | |
} catch (const std::exception & err) { | |
LLAMA_LOG_ERROR("%s: error loading state: %s\n", __func__, err.what()); | |
return 0; | |
} | |
} | |
static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { | |
llama_file file(path_session, "rb"); | |
// sanity checks | |
{ | |
const uint32_t magic = file.read_u32(); | |
const uint32_t version = file.read_u32(); | |
if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) { | |
LLAMA_LOG_ERROR("%s: unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version); | |
return false; | |
} | |
} | |
// load the prompt | |
{ | |
const uint32_t n_token_count = file.read_u32(); | |
if (n_token_count > n_token_capacity) { | |
LLAMA_LOG_ERROR("%s: token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); | |
return false; | |
} | |
file.read_raw(tokens_out, sizeof(llama_token) * n_token_count); | |
*n_token_count_out = n_token_count; | |
} | |
// restore the context state | |
{ | |
const size_t n_state_size_cur = file.size() - file.tell(); | |
llama_data_read_file data_ctx(&file); | |
const size_t n_read = llama_state_set_data_internal(ctx, data_ctx); | |
if (n_read != n_state_size_cur) { | |
LLAMA_LOG_ERROR("%s: did not read all of the session file data! size %zu, got %zu\n", __func__, n_state_size_cur, n_read); | |
return false; | |
} | |
} | |
return true; | |
} | |
bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { | |
try { | |
return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out); | |
} catch (const std::exception & err) { | |
LLAMA_LOG_ERROR("%s: error loading session file: %s\n", __func__, err.what()); | |
return false; | |
} | |
} | |
static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { | |
llama_file file(path_session, "wb"); | |
file.write_u32(LLAMA_SESSION_MAGIC); | |
file.write_u32(LLAMA_SESSION_VERSION); | |
// save the prompt | |
file.write_u32((uint32_t) n_token_count); | |
file.write_raw(tokens, sizeof(llama_token) * n_token_count); | |
// save the context state using stream saving | |
llama_data_write_file data_ctx(&file); | |
llama_state_get_data_internal(ctx, data_ctx); | |
return true; | |
} | |
bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { | |
try { | |
return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count); | |
} catch (const std::exception & err) { | |
LLAMA_LOG_ERROR("%s: error saving session file: %s\n", __func__, err.what()); | |
return false; | |
} | |
} | |
static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_write & data_ctx, llama_seq_id seq_id) { | |
llama_synchronize(ctx); | |
data_ctx.write_kv_cache(ctx, seq_id); | |
return data_ctx.get_size_written(); | |
} | |
size_t llama_state_seq_get_size(struct llama_context * ctx, llama_seq_id seq_id) { | |
llama_data_write_dummy data_ctx; | |
return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id); | |
} | |
size_t llama_state_seq_get_data(struct llama_context * ctx, uint8_t * dst, size_t size, llama_seq_id seq_id) { | |
llama_data_write_buffer data_ctx(dst, size); | |
try { | |
return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id); | |
} catch (const std::exception & err) { | |
LLAMA_LOG_ERROR("%s: error saving sequence state: %s\n", __func__, err.what()); | |
return 0; | |
} | |
} | |
static size_t llama_state_seq_set_data_internal(struct llama_context * ctx, llama_data_read & data_ctx, llama_seq_id dest_seq_id) { | |
llama_synchronize(ctx); | |
data_ctx.read_kv_cache(ctx, dest_seq_id); | |
return data_ctx.get_size_read(); | |
} | |
size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, size_t size, llama_seq_id dest_seq_id) { | |
llama_data_read_buffer data_ctx(src, size); | |
try { | |
return llama_state_seq_set_data_internal(ctx, data_ctx, dest_seq_id); | |
} catch (const std::exception & err) { | |
LLAMA_LOG_ERROR("%s: error loading sequence state: %s\n", __func__, err.what()); | |
return 0; | |
} | |
} | |
static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) { | |
llama_file file(filepath, "wb"); | |
file.write_u32(LLAMA_STATE_SEQ_MAGIC); | |
file.write_u32(LLAMA_STATE_SEQ_VERSION); | |
// save the prompt | |
file.write_u32((uint32_t) n_token_count); | |
file.write_raw(tokens, sizeof(llama_token) * n_token_count); | |
// save the context state using stream saving | |
llama_data_write_file data_ctx(&file); | |
llama_state_seq_get_data_internal(ctx, data_ctx, seq_id); | |
const size_t res = file.tell(); | |
GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written()); | |
return res; | |
} | |
static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { | |
llama_file file(filepath, "rb"); | |
// version checks | |
{ | |
const uint32_t magic = file.read_u32(); | |
const uint32_t version = file.read_u32(); | |
if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) { | |
LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version); | |
return 0; | |
} | |
} | |
// load the prompt | |
{ | |
const uint32_t n_token_count = file.read_u32(); | |
if (n_token_count > n_token_capacity) { | |
LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); | |
return 0; | |
} | |
file.read_raw(tokens_out, sizeof(llama_token) * n_token_count); | |
*n_token_count_out = n_token_count; | |
} | |
// restore the context state | |
{ | |
const size_t state_size = file.size() - file.tell(); | |
llama_data_read_file data_ctx(&file); | |
const size_t nread = llama_state_seq_set_data_internal(ctx, data_ctx, dest_seq_id); | |
if (!nread) { | |
LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__); | |
return 0; | |
} | |
GGML_ASSERT(nread <= state_size); | |
GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell()); | |
} | |
return file.tell(); | |
} | |
size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) { | |
try { | |
return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count); | |
} catch (const std::exception & err) { | |
LLAMA_LOG_ERROR("%s: error saving sequence state file: %s\n", __func__, err.what()); | |
return 0; | |
} | |
} | |
size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { | |
try { | |
return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out); | |
} catch (const std::exception & err) { | |
LLAMA_LOG_ERROR("%s: error loading sequence state file: %s\n", __func__, err.what()); | |
return 0; | |
} | |
} | |
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map( | |
struct llama_context * ctx | |
) { | |
return ctx->model.tensors_by_name; | |
} | |