Spaces:
Running
Running
static void zeros(std::ofstream & file, size_t n) { | |
char zero = 0; | |
for (size_t i = 0; i < n; ++i) { | |
file.write(&zero, 1); | |
} | |
} | |
struct quantize_state_impl { | |
const llama_model & model; | |
const llama_model_quantize_params * params; | |
int n_attention_wv = 0; | |
int n_ffn_down = 0; | |
int n_ffn_gate = 0; | |
int n_ffn_up = 0; | |
int i_attention_wv = 0; | |
int i_ffn_down = 0; | |
int i_ffn_gate = 0; | |
int i_ffn_up = 0; | |
int n_k_quantized = 0; | |
int n_fallback = 0; | |
bool has_imatrix = false; | |
// used to figure out if a model shares tok_embd with the output weight | |
bool has_output = false; | |
quantize_state_impl(const llama_model & model, const llama_model_quantize_params * params) | |
: model(model) | |
, params(params) | |
{} | |
}; | |
static void llama_tensor_dequantize_impl( | |
struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers, | |
const size_t nelements, const int nthread | |
) { | |
if (output.size() < nelements) { | |
output.resize(nelements); | |
} | |
float * f32_output = (float *) output.data(); | |
const ggml_type_traits * qtype = ggml_get_type_traits(tensor->type); | |
if (ggml_is_quantized(tensor->type)) { | |
if (qtype->to_float == NULL) { | |
throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type))); | |
} | |
} else if (tensor->type != GGML_TYPE_F16 && | |
tensor->type != GGML_TYPE_BF16) { | |
throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type))); | |
} | |
if (nthread < 2) { | |
if (tensor->type == GGML_TYPE_F16) { | |
ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements); | |
} else if (tensor->type == GGML_TYPE_BF16) { | |
ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements); | |
} else if (ggml_is_quantized(tensor->type)) { | |
qtype->to_float(tensor->data, f32_output, nelements); | |
} else { | |
GGML_ABORT("fatal error"); // unreachable | |
} | |
return; | |
} | |
size_t block_size; | |
if (tensor->type == GGML_TYPE_F16 || | |
tensor->type == GGML_TYPE_BF16) { | |
block_size = 1; | |
} else { | |
block_size = (size_t)ggml_blck_size(tensor->type); | |
} | |
size_t block_size_bytes = ggml_type_size(tensor->type); | |
GGML_ASSERT(nelements % block_size == 0); | |
size_t nblocks = nelements / block_size; | |
size_t blocks_per_thread = nblocks / nthread; | |
size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count | |
size_t in_buff_offs = 0; | |
size_t out_buff_offs = 0; | |
for (int tnum = 0; tnum < nthread; tnum++) { | |
size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread | |
size_t thr_elems = thr_blocks * block_size; // number of elements for this thread | |
size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread | |
auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) { | |
if (typ == GGML_TYPE_F16) { | |
ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels); | |
} else if (typ == GGML_TYPE_BF16) { | |
ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels); | |
} else { | |
qtype->to_float(inbuf, outbuf, nels); | |
} | |
}; | |
workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems); | |
in_buff_offs += thr_block_bytes; | |
out_buff_offs += thr_elems; | |
} | |
for (auto & w : workers) { w.join(); } | |
workers.clear(); | |
} | |
static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) { | |
const std::string name = ggml_get_name(tensor); | |
// TODO: avoid hardcoded tensor names - use the TN_* constants | |
const llm_arch arch = qs.model.arch; | |
const auto tn = LLM_TN(arch); | |
auto use_more_bits = [](int i_layer, int n_layers) -> bool { | |
return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2; | |
}; | |
const int n_expert = std::max(1, (int)qs.model.hparams.n_expert); | |
auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) { | |
if (n_expert > 1) { | |
// Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but occasionally randomly | |
// sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work | |
// for getting the current layer as I initially thought, and we need to resort to parsing the | |
// tensor name. | |
if (sscanf(name, "blk.%d.", &i_layer) != 1) { | |
throw std::runtime_error(format("Failed to determine layer for tensor %s", name)); | |
} | |
if (i_layer < 0 || i_layer >= n_layer) { | |
throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer)); | |
} | |
} | |
return std::make_pair(i_layer, n_layer); | |
}; | |
// for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings | |
// with the quantization of the output tensor | |
if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) { | |
if (qs.params->output_tensor_type < GGML_TYPE_COUNT) { | |
new_type = qs.params->output_tensor_type; | |
} else { | |
const int64_t nx = tensor->ne[0]; | |
const int64_t qk_k = ggml_blck_size(new_type); | |
if (arch == LLM_ARCH_FALCON || nx % qk_k != 0) { | |
new_type = GGML_TYPE_Q8_0; | |
} | |
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || | |
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || | |
ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { | |
new_type = GGML_TYPE_Q5_K; | |
} | |
else if (new_type != GGML_TYPE_Q8_0) { | |
new_type = GGML_TYPE_Q6_K; | |
} | |
} | |
} else if (name == "token_embd.weight") { | |
if (qs.params->token_embedding_type < GGML_TYPE_COUNT) { | |
new_type = qs.params->token_embedding_type; | |
} else { | |
if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || | |
ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { | |
new_type = GGML_TYPE_Q2_K; | |
} | |
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) { | |
new_type = GGML_TYPE_IQ3_S; | |
} | |
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { | |
new_type = GGML_TYPE_IQ3_S; | |
} | |
else if (ftype == LLAMA_FTYPE_MOSTLY_TQ1_0 || ftype == LLAMA_FTYPE_MOSTLY_TQ2_0) { | |
new_type = GGML_TYPE_Q4_K; | |
} | |
} | |
} else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || | |
ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { | |
if (name.find("attn_v.weight") != std::string::npos) { | |
if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K; | |
else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; | |
++qs.i_attention_wv; | |
} | |
else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) { | |
new_type = GGML_TYPE_Q4_K; | |
} | |
else if (name.find("ffn_down") != std::string::npos) { | |
if (qs.i_ffn_down < qs.n_ffn_down/8) { | |
new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; | |
} | |
++qs.i_ffn_down; | |
} | |
else if (name.find("attn_output.weight") != std::string::npos) { | |
if (qs.model.hparams.n_expert == 8) { | |
new_type = GGML_TYPE_Q5_K; | |
} else { | |
if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS; | |
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S; | |
} | |
} | |
} else if (name.find("attn_v.weight") != std::string::npos) { | |
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) { | |
new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; | |
} | |
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) { | |
new_type = GGML_TYPE_Q4_K; | |
} | |
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { | |
new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS; | |
} | |
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) { | |
new_type = GGML_TYPE_Q4_K; | |
} | |
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) { | |
new_type = GGML_TYPE_Q4_K; | |
} | |
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { | |
new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; | |
} | |
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; | |
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) { | |
new_type = GGML_TYPE_Q5_K; | |
} | |
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && | |
use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K; | |
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K; | |
if (qs.model.type == LLM_TYPE_70B) { | |
// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is | |
// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with | |
// nearly negligible increase in model size by quantizing this tensor with more bits: | |
if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K; | |
} | |
if (qs.model.hparams.n_expert == 8) { | |
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB | |
// TODO: explore better strategies | |
new_type = GGML_TYPE_Q8_0; | |
} | |
++qs.i_attention_wv; | |
} else if (name.find("attn_k.weight") != std::string::npos) { | |
if (qs.model.hparams.n_expert == 8) { | |
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB | |
// TODO: explore better strategies | |
new_type = GGML_TYPE_Q8_0; | |
} | |
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) { | |
new_type = GGML_TYPE_IQ3_XXS; | |
} | |
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { | |
new_type = GGML_TYPE_IQ2_S; | |
} | |
} else if (name.find("attn_q.weight") != std::string::npos) { | |
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) { | |
new_type = GGML_TYPE_IQ3_XXS; | |
} | |
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { | |
new_type = GGML_TYPE_IQ2_S; | |
} | |
} else if (name.find("ffn_down") != std::string::npos) { | |
auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str()); | |
int i_layer = info.first, n_layer = info.second; | |
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; | |
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) { | |
if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K; | |
} | |
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) { | |
new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; | |
} | |
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { | |
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K | |
: arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K | |
: GGML_TYPE_Q3_K; | |
} | |
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 || | |
(qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) { | |
new_type = GGML_TYPE_Q4_K; | |
} | |
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) { | |
new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K; | |
} | |
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) { | |
if (arch == LLM_ARCH_FALCON) { | |
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K : | |
use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; | |
} else { | |
if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; | |
} | |
} | |
else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) { | |
new_type = GGML_TYPE_Q5_K; | |
} | |
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; | |
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) { | |
new_type = GGML_TYPE_Q5_K; | |
} | |
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0) | |
&& qs.has_imatrix && i_layer < n_layer/8) { | |
// Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0. | |
// We only do it when an imatrix is provided because a) we want to make sure that one can always get the | |
// same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix. | |
new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1; | |
} | |
++qs.i_ffn_down; | |
} else if (name.find("attn_output.weight") != std::string::npos) { | |
if (arch != LLM_ARCH_FALCON) { | |
if (qs.model.hparams.n_expert == 8) { | |
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || | |
ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || | |
ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S || | |
ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) { | |
new_type = GGML_TYPE_Q5_K; | |
} | |
} else { | |
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K; | |
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S; | |
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K; | |
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K; | |
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K; | |
} | |
} else { | |
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K; | |
} | |
} | |
else if (name.find("attn_qkv.weight") != std::string::npos) { | |
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) { | |
new_type = GGML_TYPE_Q4_K; | |
} | |
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K; | |
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K; | |
} | |
else if (name.find("ffn_gate") != std::string::npos) { | |
auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str()); | |
int i_layer = info.first, n_layer = info.second; | |
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) { | |
new_type = GGML_TYPE_IQ3_XXS; | |
} | |
++qs.i_ffn_gate; | |
} | |
else if (name.find("ffn_up") != std::string::npos) { | |
auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str()); | |
int i_layer = info.first, n_layer = info.second; | |
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) { | |
new_type = GGML_TYPE_IQ3_XXS; | |
} | |
++qs.i_ffn_up; | |
} | |
// if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; | |
//} | |
// IK: let's remove this, else Q2_K is almost the same as Q3_K_S | |
//else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) { | |
// if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; | |
//} | |
// This can be used to reduce the size of the Q5_K_S model. | |
// The associated PPL increase is fully in line with the size reduction | |
//else { | |
// if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K; | |
//} | |
bool convert_incompatible_tensor = false; | |
{ | |
const int64_t nx = tensor->ne[0]; | |
const int64_t ny = tensor->ne[1]; | |
const int64_t qk_k = ggml_blck_size(new_type); | |
if (nx % qk_k != 0) { | |
LLAMA_LOG_WARN("\n\n%s : tensor cols %" PRId64 " x %" PRId64 " are not divisible by %" PRId64 ", required for %s", __func__, nx, ny, qk_k, ggml_type_name(new_type)); | |
convert_incompatible_tensor = true; | |
} else { | |
++qs.n_k_quantized; | |
} | |
} | |
if (convert_incompatible_tensor) { | |
switch (new_type) { | |
case GGML_TYPE_TQ1_0: | |
case GGML_TYPE_TQ2_0: new_type = GGML_TYPE_Q4_0; break; // TODO: use a symmetric type instead | |
case GGML_TYPE_IQ2_XXS: | |
case GGML_TYPE_IQ2_XS: | |
case GGML_TYPE_IQ2_S: | |
case GGML_TYPE_IQ3_XXS: | |
case GGML_TYPE_IQ3_S: | |
case GGML_TYPE_IQ1_S: | |
case GGML_TYPE_IQ1_M: | |
case GGML_TYPE_Q2_K: | |
case GGML_TYPE_Q3_K: | |
case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break; | |
case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break; | |
case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break; | |
case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break; | |
default: throw std::runtime_error("\nUnsupported tensor size encountered\n"); | |
} | |
if (tensor->ne[0] % ggml_blck_size(new_type) != 0) { | |
new_type = GGML_TYPE_F16; | |
} | |
LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type)); | |
++qs.n_fallback; | |
} | |
return new_type; | |
} | |
static size_t llama_tensor_quantize_impl(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) { | |
if (nthread < 2) { | |
// single-thread | |
size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix); | |
if (!ggml_validate_row_data(new_type, new_data, new_size)) { | |
throw std::runtime_error("quantized data validation failed"); | |
} | |
return new_size; | |
} | |
std::mutex mutex; | |
int64_t counter = 0; | |
size_t new_size = 0; | |
bool valid = true; | |
auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size, | |
nrows, n_per_row, imatrix]() { | |
const int64_t nrows_per_chunk = chunk_size / n_per_row; | |
size_t local_size = 0; | |
while (true) { | |
std::unique_lock<std::mutex> lock(mutex); | |
int64_t first_row = counter; counter += nrows_per_chunk; | |
if (first_row >= nrows) { | |
if (local_size > 0) { | |
new_size += local_size; | |
} | |
break; | |
} | |
lock.unlock(); | |
const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk); | |
size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix); | |
local_size += this_size; | |
// validate the quantized data | |
const size_t row_size = ggml_row_size(new_type, n_per_row); | |
void * this_data = (char *) new_data + first_row * row_size; | |
if (!ggml_validate_row_data(new_type, this_data, this_size)) { | |
std::unique_lock<std::mutex> lock(mutex); | |
valid = false; | |
break; | |
} | |
} | |
}; | |
for (int it = 0; it < nthread - 1; ++it) { | |
workers.emplace_back(compute); | |
} | |
compute(); | |
for (auto & w : workers) { w.join(); } | |
workers.clear(); | |
if (!valid) { | |
throw std::runtime_error("quantized data validation failed"); | |
} | |
return new_size; | |
} | |
static void llama_model_quantize_impl(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) { | |
ggml_type default_type; | |
llama_ftype ftype = params->ftype; | |
switch (params->ftype) { | |
case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break; | |
case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break; | |
case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break; | |
case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break; | |
case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break; | |
case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break; | |
case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break; | |
case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break; | |
// K-quants | |
case LLAMA_FTYPE_MOSTLY_Q2_K_S: | |
case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break; | |
case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break; | |
case LLAMA_FTYPE_MOSTLY_Q3_K_S: | |
case LLAMA_FTYPE_MOSTLY_Q3_K_M: | |
case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break; | |
case LLAMA_FTYPE_MOSTLY_Q4_K_S: | |
case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break; | |
case LLAMA_FTYPE_MOSTLY_Q5_K_S: | |
case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break; | |
case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break; | |
case LLAMA_FTYPE_MOSTLY_TQ1_0: default_type = GGML_TYPE_TQ1_0; break; | |
case LLAMA_FTYPE_MOSTLY_TQ2_0: default_type = GGML_TYPE_TQ2_0; break; | |
case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break; | |
case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break; | |
case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break; | |
case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break; | |
case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break; | |
case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break; | |
case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break; | |
case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break; | |
case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break; | |
case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break; | |
case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break; | |
default: throw std::runtime_error(format("invalid output file type %d\n", ftype)); | |
} | |
int nthread = params->nthread; | |
if (nthread <= 0) { | |
nthread = std::thread::hardware_concurrency(); | |
} | |
// mmap consistently increases speed Linux, and also increases speed on Windows with | |
// hot cache. It may cause a slowdown on macOS, possibly related to free memory. | |
constexpr bool use_mmap = true; | |
constexpr bool use_mmap = false; | |
llama_model_kv_override * kv_overrides = nullptr; | |
if (params->kv_overrides) { | |
auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides; | |
kv_overrides = v->data(); | |
} | |
std::vector<std::string> splits = {}; | |
llama_model_loader ml(fname_inp, splits, use_mmap, /*check_tensors*/ true, kv_overrides); | |
ml.init_mappings(false); // no prefetching | |
llama_model model(llama_model_default_params()); | |
model.load_arch (ml); | |
model.load_hparams(ml); | |
model.load_stats (ml); | |
struct quantize_state_impl qs(model, params); | |
if (params->only_copy) { | |
ftype = ml.ftype; | |
} | |
const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr; | |
if (params->imatrix) { | |
imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix); | |
if (imatrix_data) { | |
LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size())); | |
qs.has_imatrix = true; | |
// check imatrix for nans or infs | |
for (const auto & kv : *imatrix_data) { | |
for (float f : kv.second) { | |
if (!std::isfinite(f)) { | |
throw std::runtime_error(format("imatrix contains non-finite value %f\n", f)); | |
} | |
} | |
} | |
} | |
} | |
const size_t align = GGUF_DEFAULT_ALIGNMENT; | |
gguf_context_ptr ctx_out { gguf_init_empty() }; | |
// copy the KV pairs from the input file | |
gguf_set_kv (ctx_out.get(), ml.meta.get()); | |
gguf_set_val_u32(ctx_out.get(), "general.quantization_version", GGML_QNT_VERSION); // TODO: use LLM_KV | |
gguf_set_val_u32(ctx_out.get(), "general.file_type", ftype); // TODO: use LLM_KV | |
// Remove split metadata | |
gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_NO).c_str()); | |
gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str()); | |
gguf_remove_key(ctx_out.get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str()); | |
if (params->kv_overrides) { | |
const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides; | |
for (const auto & o : overrides) { | |
if (o.key[0] == 0) break; | |
if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) { | |
gguf_set_val_f32(ctx_out.get(), o.key, o.val_f64); | |
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) { | |
gguf_set_val_i32(ctx_out.get(), o.key, o.val_i64); | |
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) { | |
gguf_set_val_bool(ctx_out.get(), o.key, o.val_bool); | |
} else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) { | |
gguf_set_val_str(ctx_out.get(), o.key, o.val_str); | |
} else { | |
LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key); | |
} | |
} | |
} | |
// make a list of weights | |
std::vector<const llama_model_loader::llama_tensor_weight *> tensors; | |
tensors.reserve(ml.weights_map.size()); | |
for (const auto & it : ml.weights_map) { | |
tensors.push_back(&it.second); | |
} | |
// keep_split requires that the weights are sorted by split index | |
if (params->keep_split) { | |
std::sort(tensors.begin(), tensors.end(), [](const llama_model_loader::llama_tensor_weight * a, const llama_model_loader::llama_tensor_weight * b) { | |
if (a->idx == b->idx) { | |
return a->offs < b->offs; | |
} | |
return a->idx < b->idx; | |
}); | |
} | |
for (const auto * it : tensors) { | |
const struct ggml_tensor * tensor = it->tensor; | |
const std::string name = ggml_get_name(tensor); | |
// TODO: avoid hardcoded tensor names - use the TN_* constants | |
if (name.find("attn_v.weight") != std::string::npos || | |
name.find("attn_qkv.weight") != std::string::npos || | |
name.find("attn_kv_b.weight")!= std::string::npos) { | |
++qs.n_attention_wv; | |
} else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) { | |
qs.has_output = true; | |
} | |
} | |
qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer; | |
// sanity checks for models that have attention layers | |
if (qs.n_attention_wv != 0) | |
{ | |
const auto & n_head_kv_iter = model.hparams.n_head_kv_arr.begin(); | |
// attention layers have a non-zero number of kv heads | |
int32_t n_attn_layer = model.hparams.n_layer - std::count(n_head_kv_iter, n_head_kv_iter + model.hparams.n_layer, 0); | |
if (llama_model_has_encoder(&model)) { | |
n_attn_layer *= 3; | |
} | |
GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected"); | |
} | |
size_t total_size_org = 0; | |
size_t total_size_new = 0; | |
std::vector<std::thread> workers; | |
workers.reserve(nthread); | |
int idx = 0; | |
std::vector<no_init<uint8_t>> read_data; | |
std::vector<no_init<uint8_t>> work; | |
std::vector<no_init<float>> f32_conv_buf; | |
uint16_t n_split = 1; | |
// Assume split index is continuous | |
if (params->keep_split) { | |
for (const auto * it : tensors) { | |
n_split = std::max(uint16_t(it->idx + 1), n_split); | |
} | |
} | |
std::vector<gguf_context_ptr> ctx_outs(n_split); | |
ctx_outs[0] = std::move(ctx_out); | |
// populate the original tensors so we get an initial meta data | |
for (const auto * it : tensors) { | |
uint16_t i_split = params->keep_split ? it->idx : 0; | |
struct ggml_tensor * tensor = it->tensor; | |
if (!ctx_outs[i_split]) { | |
ctx_outs[i_split].reset(gguf_init_empty()); | |
} | |
gguf_add_tensor(ctx_outs[i_split].get(), tensor); | |
} | |
// Set split info if needed | |
if (n_split > 1) { | |
for (size_t i = 0; i < ctx_outs.size(); ++i) { | |
gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i); | |
gguf_set_val_u16(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split); | |
gguf_set_val_i32(ctx_outs[i].get(), ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors); | |
} | |
} | |
int cur_split = -1; | |
std::ofstream fout; | |
auto close_ofstream = [&]() { | |
// Write metadata and close file handler | |
if (fout.is_open()) { | |
fout.seekp(0); | |
std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split].get())); | |
gguf_get_meta_data(ctx_outs[cur_split].get(), data.data()); | |
fout.write((const char *) data.data(), data.size()); | |
fout.close(); | |
} | |
}; | |
auto new_ofstream = [&](int index) { | |
cur_split = index; | |
GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context"); | |
std::string fname = fname_out; | |
if (params->keep_split) { | |
std::vector<char> split_path(llama_path_max(), 0); | |
llama_split_path(split_path.data(), split_path.size(), fname_out.c_str(), cur_split, n_split); | |
fname = std::string(split_path.data()); | |
} | |
fout = std::ofstream(fname, std::ios::binary); | |
fout.exceptions(std::ofstream::failbit); // fail fast on write errors | |
const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split].get()); | |
// placeholder for the meta data | |
::zeros(fout, meta_size); | |
}; | |
const auto tn = LLM_TN(model.arch); | |
new_ofstream(0); | |
for (const auto * it : tensors) { | |
const auto & weight = *it; | |
struct ggml_tensor * tensor = weight.tensor; | |
if (weight.idx != cur_split && params->keep_split) { | |
close_ofstream(); | |
new_ofstream(weight.idx); | |
} | |
const std::string name = ggml_get_name(tensor); | |
if (!ml.use_mmap) { | |
if (read_data.size() < ggml_nbytes(tensor)) { | |
read_data.resize(ggml_nbytes(tensor)); | |
} | |
tensor->data = read_data.data(); | |
} | |
ml.load_data_for(tensor); | |
LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ", | |
++idx, ml.n_tensors, | |
ggml_get_name(tensor), | |
llama_format_tensor_shape(tensor).c_str(), | |
ggml_type_name(tensor->type)); | |
// This used to be a regex, but <regex> has an extreme cost to compile times. | |
bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'? | |
// quantize only 2D and 3D tensors (experts) | |
quantize &= (ggml_n_dims(tensor) >= 2); | |
// do not quantize norm tensors | |
quantize &= name.find("_norm.weight") == std::string::npos; | |
quantize &= params->quantize_output_tensor || name != "output.weight"; | |
quantize &= !params->only_copy; | |
// do not quantize expert gating tensors | |
// NOTE: can't use LLM_TN here because the layer number is not known | |
quantize &= name.find("ffn_gate_inp.weight") == std::string::npos; | |
// do not quantize positional embeddings and token types (BERT) | |
quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight"); | |
quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight"); | |
// do not quantize Mamba's small yet 2D weights | |
// NOTE: can't use LLM_TN here because the layer number is not known | |
quantize &= name.find("ssm_conv1d.weight") == std::string::npos; | |
// do not quantize RWKV's time_mix_first tensors | |
quantize &= name.find("time_mix_first.weight") == std::string::npos; | |
quantize &= name.find("time_mix_w1.weight") == std::string::npos; | |
quantize &= name.find("time_mix_w2.weight") == std::string::npos; | |
quantize &= name.find("time_mix_decay_w1.weight") == std::string::npos; | |
quantize &= name.find("time_mix_decay_w2.weight") == std::string::npos; | |
quantize &= name.find("time_mix_lerp_fused.weight") == std::string::npos; | |
// do not quantize relative position bias (T5) | |
quantize &= name.find("attn_rel_b.weight") == std::string::npos; | |
enum ggml_type new_type; | |
void * new_data; | |
size_t new_size; | |
if (quantize) { | |
new_type = default_type; | |
// get more optimal quantization type based on the tensor shape, layer, etc. | |
if (!params->pure && ggml_is_quantized(default_type)) { | |
new_type = llama_tensor_get_type(qs, new_type, tensor, ftype); | |
} | |
if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) { | |
new_type = params->token_embedding_type; | |
} | |
if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) { | |
new_type = params->output_tensor_type; | |
} | |
// If we've decided to quantize to the same type the tensor is already | |
// in then there's nothing to do. | |
quantize = tensor->type != new_type; | |
} | |
if (!quantize) { | |
new_type = tensor->type; | |
new_data = tensor->data; | |
new_size = ggml_nbytes(tensor); | |
LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0); | |
} else { | |
const int64_t nelements = ggml_nelements(tensor); | |
const float * imatrix = nullptr; | |
if (imatrix_data) { | |
auto it = imatrix_data->find(tensor->name); | |
if (it == imatrix_data->end()) { | |
LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name); | |
} else { | |
if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) { | |
imatrix = it->second.data(); | |
} else { | |
LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__, | |
int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name); | |
// this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix | |
// this is a significant error and it may be good idea to abort the process if this happens, | |
// since many people will miss the error and not realize that most of the model is being quantized without an imatrix | |
// tok_embd should be ignored in this case, since it always causes this warning | |
if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) { | |
throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s", | |
int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name)); | |
} | |
} | |
} | |
} | |
if ((new_type == GGML_TYPE_IQ2_XXS || | |
new_type == GGML_TYPE_IQ2_XS || | |
new_type == GGML_TYPE_IQ2_S || | |
new_type == GGML_TYPE_IQ1_S || | |
(new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) || | |
(new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) { | |
LLAMA_LOG_ERROR("\n\n============================================================\n"); | |
LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name); | |
LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n"); | |
LLAMA_LOG_ERROR("============================================================\n\n"); | |
throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name)); | |
} | |
float * f32_data; | |
if (tensor->type == GGML_TYPE_F32) { | |
f32_data = (float *) tensor->data; | |
} else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) { | |
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type))); | |
} else { | |
llama_tensor_dequantize_impl(tensor, f32_conv_buf, workers, nelements, nthread); | |
f32_data = (float *) f32_conv_buf.data(); | |
} | |
LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type)); | |
fflush(stdout); | |
if (work.size() < (size_t)nelements * 4) { | |
work.resize(nelements * 4); // upper bound on size | |
} | |
new_data = work.data(); | |
const int64_t n_per_row = tensor->ne[0]; | |
const int64_t nrows = tensor->ne[1]; | |
static const int64_t min_chunk_size = 32 * 512; | |
const int64_t chunk_size = (n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row)); | |
const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1]; | |
const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size; | |
const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1; | |
// quantize each expert separately since they have different importance matrices | |
new_size = 0; | |
for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) { | |
const float * f32_data_03 = f32_data + i03 * nelements_matrix; | |
void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows; | |
const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr; | |
new_size += llama_tensor_quantize_impl(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use); | |
} | |
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0); | |
} | |
total_size_org += ggml_nbytes(tensor); | |
total_size_new += new_size; | |
// update the gguf meta data as we go | |
gguf_set_tensor_type(ctx_outs[cur_split].get(), name.c_str(), new_type); | |
GGML_ASSERT(gguf_get_tensor_size(ctx_outs[cur_split].get(), gguf_find_tensor(ctx_outs[cur_split].get(), name.c_str())) == new_size); | |
gguf_set_tensor_data(ctx_outs[cur_split].get(), name.c_str(), new_data); | |
// write tensor data + padding | |
fout.write((const char *) new_data, new_size); | |
zeros(fout, GGML_PAD(new_size, align) - new_size); | |
} | |
close_ofstream(); | |
LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); | |
LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0); | |
if (qs.n_fallback > 0) { | |
LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n", | |
__func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback); | |
} | |
} | |
// | |
// interface implementation | |
// | |
struct llama_model_quantize_params llama_model_quantize_default_params() { | |
struct llama_model_quantize_params result = { | |
/*.nthread =*/ 0, | |
/*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1, | |
/*.output_tensor_type =*/ GGML_TYPE_COUNT, | |
/*.token_embedding_type =*/ GGML_TYPE_COUNT, | |
/*.allow_requantize =*/ false, | |
/*.quantize_output_tensor =*/ true, | |
/*.only_copy =*/ false, | |
/*.pure =*/ false, | |
/*.keep_split =*/ false, | |
/*.imatrix =*/ nullptr, | |
/*.kv_overrides =*/ nullptr, | |
}; | |
return result; | |
} | |
uint32_t llama_model_quantize( | |
const char * fname_inp, | |
const char * fname_out, | |
const llama_model_quantize_params * params) { | |
try { | |
llama_model_quantize_impl(fname_inp, fname_out, params); | |
} catch (const std::exception & err) { | |
LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what()); | |
return 1; | |
} | |
return 0; | |
} | |