File size: 11,876 Bytes
317b678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
'''
MIT License

Copyright (c) 2021 Miaomiao Li

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
import os

import cv2
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange

from .utils import load_file_from_url


class _bn_relu_conv(nn.Module):
    def __init__(self, in_filters, nb_filters, fw, fh, subsample=1):
        super(_bn_relu_conv, self).__init__()
        self.model = nn.Sequential(
            nn.BatchNorm2d(in_filters, eps=1e-3),
            nn.LeakyReLU(0.2),
            nn.Conv2d(
                in_filters,
                nb_filters,
                (fw, fh),
                stride=subsample,
                padding=(fw // 2, fh // 2),
                padding_mode="zeros",
            ),
        )

    def forward(self, x):
        return self.model(x)

        # the following are for debugs
        print(
            "****",
            np.max(x.cpu().numpy()),
            np.min(x.cpu().numpy()),
            np.mean(x.cpu().numpy()),
            np.std(x.cpu().numpy()),
            x.shape,
        )
        for i, layer in enumerate(self.model):
            if i != 2:
                x = layer(x)
            else:
                x = layer(x)
                # x = nn.functional.pad(x, (1, 1, 1, 1), mode='constant', value=0)
            print(
                "____",
                np.max(x.cpu().numpy()),
                np.min(x.cpu().numpy()),
                np.mean(x.cpu().numpy()),
                np.std(x.cpu().numpy()),
                x.shape,
            )
            print(x[0])
        return x


class _u_bn_relu_conv(nn.Module):
    def __init__(self, in_filters, nb_filters, fw, fh, subsample=1):
        super(_u_bn_relu_conv, self).__init__()
        self.model = nn.Sequential(
            nn.BatchNorm2d(in_filters, eps=1e-3),
            nn.LeakyReLU(0.2),
            nn.Conv2d(
                in_filters,
                nb_filters,
                (fw, fh),
                stride=subsample,
                padding=(fw // 2, fh // 2),
            ),
            nn.Upsample(scale_factor=2, mode="nearest"),
        )

    def forward(self, x):
        return self.model(x)


class _shortcut(nn.Module):
    def __init__(self, in_filters, nb_filters, subsample=1):
        super(_shortcut, self).__init__()
        self.process = False
        self.model = None
        if in_filters != nb_filters or subsample != 1:
            self.process = True
            self.model = nn.Sequential(
                nn.Conv2d(in_filters, nb_filters, (1, 1), stride=subsample)
            )

    def forward(self, x, y):
        # print(x.size(), y.size(), self.process)
        if self.process:
            y0 = self.model(x)
            # print("merge+", torch.max(y0+y), torch.min(y0+y),torch.mean(y0+y), torch.std(y0+y), y0.shape)
            return y0 + y
        else:
            # print("merge", torch.max(x+y), torch.min(x+y),torch.mean(x+y), torch.std(x+y), y.shape)
            return x + y


class _u_shortcut(nn.Module):
    def __init__(self, in_filters, nb_filters, subsample):
        super(_u_shortcut, self).__init__()
        self.process = False
        self.model = None
        if in_filters != nb_filters:
            self.process = True
            self.model = nn.Sequential(
                nn.Conv2d(
                    in_filters,
                    nb_filters,
                    (1, 1),
                    stride=subsample,
                    padding_mode="zeros",
                ),
                nn.Upsample(scale_factor=2, mode="nearest"),
            )

    def forward(self, x, y):
        if self.process:
            return self.model(x) + y
        else:
            return x + y


class basic_block(nn.Module):
    def __init__(self, in_filters, nb_filters, init_subsample=1):
        super(basic_block, self).__init__()
        self.conv1 = _bn_relu_conv(
            in_filters, nb_filters, 3, 3, subsample=init_subsample
        )
        self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3)
        self.shortcut = _shortcut(in_filters, nb_filters, subsample=init_subsample)

    def forward(self, x):
        x1 = self.conv1(x)
        x2 = self.residual(x1)
        return self.shortcut(x, x2)


class _u_basic_block(nn.Module):
    def __init__(self, in_filters, nb_filters, init_subsample=1):
        super(_u_basic_block, self).__init__()
        self.conv1 = _u_bn_relu_conv(
            in_filters, nb_filters, 3, 3, subsample=init_subsample
        )
        self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3)
        self.shortcut = _u_shortcut(in_filters, nb_filters, subsample=init_subsample)

    def forward(self, x):
        y = self.residual(self.conv1(x))
        return self.shortcut(x, y)


class _residual_block(nn.Module):
    def __init__(self, in_filters, nb_filters, repetitions, is_first_layer=False):
        super(_residual_block, self).__init__()
        layers = []
        for i in range(repetitions):
            init_subsample = 1
            if i == repetitions - 1 and not is_first_layer:
                init_subsample = 2
            if i == 0:
                l = basic_block(
                    in_filters=in_filters,
                    nb_filters=nb_filters,
                    init_subsample=init_subsample,
                )
            else:
                l = basic_block(
                    in_filters=nb_filters,
                    nb_filters=nb_filters,
                    init_subsample=init_subsample,
                )
            layers.append(l)

        self.model = nn.Sequential(*layers)

    def forward(self, x):
        return self.model(x)


class _upsampling_residual_block(nn.Module):
    def __init__(self, in_filters, nb_filters, repetitions):
        super(_upsampling_residual_block, self).__init__()
        layers = []
        for i in range(repetitions):
            l = None
            if i == 0:
                l = _u_basic_block(
                    in_filters=in_filters, nb_filters=nb_filters
                )  # (input)
            else:
                l = basic_block(in_filters=nb_filters, nb_filters=nb_filters)  # (input)
            layers.append(l)

        self.model = nn.Sequential(*layers)

    def forward(self, x):
        return self.model(x)


class res_skip(nn.Module):
    def __init__(self):
        super(res_skip, self).__init__()
        self.block0 = _residual_block(
            in_filters=1, nb_filters=24, repetitions=2, is_first_layer=True
        )  # (input)
        self.block1 = _residual_block(
            in_filters=24, nb_filters=48, repetitions=3
        )  # (block0)
        self.block2 = _residual_block(
            in_filters=48, nb_filters=96, repetitions=5
        )  # (block1)
        self.block3 = _residual_block(
            in_filters=96, nb_filters=192, repetitions=7
        )  # (block2)
        self.block4 = _residual_block(
            in_filters=192, nb_filters=384, repetitions=12
        )  # (block3)

        self.block5 = _upsampling_residual_block(
            in_filters=384, nb_filters=192, repetitions=7
        )  # (block4)
        self.res1 = _shortcut(
            in_filters=192, nb_filters=192
        )  # (block3, block5, subsample=(1,1))

        self.block6 = _upsampling_residual_block(
            in_filters=192, nb_filters=96, repetitions=5
        )  # (res1)
        self.res2 = _shortcut(
            in_filters=96, nb_filters=96
        )  # (block2, block6, subsample=(1,1))

        self.block7 = _upsampling_residual_block(
            in_filters=96, nb_filters=48, repetitions=3
        )  # (res2)
        self.res3 = _shortcut(
            in_filters=48, nb_filters=48
        )  # (block1, block7, subsample=(1,1))

        self.block8 = _upsampling_residual_block(
            in_filters=48, nb_filters=24, repetitions=2
        )  # (res3)
        self.res4 = _shortcut(
            in_filters=24, nb_filters=24
        )  # (block0,block8, subsample=(1,1))

        self.block9 = _residual_block(
            in_filters=24, nb_filters=16, repetitions=2, is_first_layer=True
        )  # (res4)
        self.conv15 = _bn_relu_conv(
            in_filters=16, nb_filters=1, fh=1, fw=1, subsample=1
        )  # (block7)

    def forward(self, x):
        x0 = self.block0(x)
        x1 = self.block1(x0)
        x2 = self.block2(x1)
        x3 = self.block3(x2)
        x4 = self.block4(x3)

        x5 = self.block5(x4)
        res1 = self.res1(x3, x5)

        x6 = self.block6(res1)
        res2 = self.res2(x2, x6)

        x7 = self.block7(res2)
        res3 = self.res3(x1, x7)

        x8 = self.block8(res3)
        res4 = self.res4(x0, x8)

        x9 = self.block9(res4)
        y = self.conv15(x9)

        return y


class MangaLineExtraction:
    def __init__(self, device=None, model_dir=None):
        self.model = None
        self.device = device
        MangaLineExtraction.model_dir = model_dir

    def load_model(self):
        remote_model_path = (
            "https://huggingface.co/lllyasviel/Annotators/resolve/main/erika.pth"
        )
        modelpath = os.path.join(self.model_dir, "erika.pth")
        if not os.path.exists(modelpath):
            load_file_from_url(remote_model_path, model_dir=self.model_dir)
        # norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
        net = res_skip()
        ckpt = torch.load(modelpath)
        for key in list(ckpt.keys()):
            if "module." in key:
                ckpt[key.replace("module.", "")] = ckpt[key]
                del ckpt[key]
        net.load_state_dict(ckpt)
        net.eval()
        self.model = net.to(self.device)

    def unload_model(self):
        if self.model is not None:
            self.model.cpu()

    def __call__(self, input_image):
        if self.model is None:
            self.load_model()
        self.model.to(self.device)
        # if width or height is not divisible by 16, pad the image
        h, w = input_image.shape[:2]
        # get adjusted pixel amount to max 1280x1280
        total_pixels = h * w
        if total_pixels > 1280 * 1280:
            ratio = (1280 * 1280) / total_pixels
            ratio = ratio**0.5
            h = int(h * ratio)
            w = int(w * ratio)
        divisible = 16
        h = h + (divisible - h % divisible) % divisible
        w = w + (divisible - w % divisible) % divisible
        input_image = cv2.resize(input_image, (w, h))
        img = cv2.cvtColor(input_image, cv2.COLOR_RGB2GRAY)
        img = np.ascontiguousarray(img.copy()).copy()
        with torch.no_grad():
            image_feed = torch.from_numpy(img).float().to(self.device)
            image_feed = rearrange(image_feed, "h w -> 1 1 h w")
            line = self.model(image_feed).cpu().numpy()[0, 0]
            # line = 255 - line
            return line.clip(0, 255).astype(np.uint8)