Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,876 Bytes
317b678 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
'''
MIT License
Copyright (c) 2021 Miaomiao Li
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
import os
import cv2
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange
from .utils import load_file_from_url
class _bn_relu_conv(nn.Module):
def __init__(self, in_filters, nb_filters, fw, fh, subsample=1):
super(_bn_relu_conv, self).__init__()
self.model = nn.Sequential(
nn.BatchNorm2d(in_filters, eps=1e-3),
nn.LeakyReLU(0.2),
nn.Conv2d(
in_filters,
nb_filters,
(fw, fh),
stride=subsample,
padding=(fw // 2, fh // 2),
padding_mode="zeros",
),
)
def forward(self, x):
return self.model(x)
# the following are for debugs
print(
"****",
np.max(x.cpu().numpy()),
np.min(x.cpu().numpy()),
np.mean(x.cpu().numpy()),
np.std(x.cpu().numpy()),
x.shape,
)
for i, layer in enumerate(self.model):
if i != 2:
x = layer(x)
else:
x = layer(x)
# x = nn.functional.pad(x, (1, 1, 1, 1), mode='constant', value=0)
print(
"____",
np.max(x.cpu().numpy()),
np.min(x.cpu().numpy()),
np.mean(x.cpu().numpy()),
np.std(x.cpu().numpy()),
x.shape,
)
print(x[0])
return x
class _u_bn_relu_conv(nn.Module):
def __init__(self, in_filters, nb_filters, fw, fh, subsample=1):
super(_u_bn_relu_conv, self).__init__()
self.model = nn.Sequential(
nn.BatchNorm2d(in_filters, eps=1e-3),
nn.LeakyReLU(0.2),
nn.Conv2d(
in_filters,
nb_filters,
(fw, fh),
stride=subsample,
padding=(fw // 2, fh // 2),
),
nn.Upsample(scale_factor=2, mode="nearest"),
)
def forward(self, x):
return self.model(x)
class _shortcut(nn.Module):
def __init__(self, in_filters, nb_filters, subsample=1):
super(_shortcut, self).__init__()
self.process = False
self.model = None
if in_filters != nb_filters or subsample != 1:
self.process = True
self.model = nn.Sequential(
nn.Conv2d(in_filters, nb_filters, (1, 1), stride=subsample)
)
def forward(self, x, y):
# print(x.size(), y.size(), self.process)
if self.process:
y0 = self.model(x)
# print("merge+", torch.max(y0+y), torch.min(y0+y),torch.mean(y0+y), torch.std(y0+y), y0.shape)
return y0 + y
else:
# print("merge", torch.max(x+y), torch.min(x+y),torch.mean(x+y), torch.std(x+y), y.shape)
return x + y
class _u_shortcut(nn.Module):
def __init__(self, in_filters, nb_filters, subsample):
super(_u_shortcut, self).__init__()
self.process = False
self.model = None
if in_filters != nb_filters:
self.process = True
self.model = nn.Sequential(
nn.Conv2d(
in_filters,
nb_filters,
(1, 1),
stride=subsample,
padding_mode="zeros",
),
nn.Upsample(scale_factor=2, mode="nearest"),
)
def forward(self, x, y):
if self.process:
return self.model(x) + y
else:
return x + y
class basic_block(nn.Module):
def __init__(self, in_filters, nb_filters, init_subsample=1):
super(basic_block, self).__init__()
self.conv1 = _bn_relu_conv(
in_filters, nb_filters, 3, 3, subsample=init_subsample
)
self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3)
self.shortcut = _shortcut(in_filters, nb_filters, subsample=init_subsample)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.residual(x1)
return self.shortcut(x, x2)
class _u_basic_block(nn.Module):
def __init__(self, in_filters, nb_filters, init_subsample=1):
super(_u_basic_block, self).__init__()
self.conv1 = _u_bn_relu_conv(
in_filters, nb_filters, 3, 3, subsample=init_subsample
)
self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3)
self.shortcut = _u_shortcut(in_filters, nb_filters, subsample=init_subsample)
def forward(self, x):
y = self.residual(self.conv1(x))
return self.shortcut(x, y)
class _residual_block(nn.Module):
def __init__(self, in_filters, nb_filters, repetitions, is_first_layer=False):
super(_residual_block, self).__init__()
layers = []
for i in range(repetitions):
init_subsample = 1
if i == repetitions - 1 and not is_first_layer:
init_subsample = 2
if i == 0:
l = basic_block(
in_filters=in_filters,
nb_filters=nb_filters,
init_subsample=init_subsample,
)
else:
l = basic_block(
in_filters=nb_filters,
nb_filters=nb_filters,
init_subsample=init_subsample,
)
layers.append(l)
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class _upsampling_residual_block(nn.Module):
def __init__(self, in_filters, nb_filters, repetitions):
super(_upsampling_residual_block, self).__init__()
layers = []
for i in range(repetitions):
l = None
if i == 0:
l = _u_basic_block(
in_filters=in_filters, nb_filters=nb_filters
) # (input)
else:
l = basic_block(in_filters=nb_filters, nb_filters=nb_filters) # (input)
layers.append(l)
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class res_skip(nn.Module):
def __init__(self):
super(res_skip, self).__init__()
self.block0 = _residual_block(
in_filters=1, nb_filters=24, repetitions=2, is_first_layer=True
) # (input)
self.block1 = _residual_block(
in_filters=24, nb_filters=48, repetitions=3
) # (block0)
self.block2 = _residual_block(
in_filters=48, nb_filters=96, repetitions=5
) # (block1)
self.block3 = _residual_block(
in_filters=96, nb_filters=192, repetitions=7
) # (block2)
self.block4 = _residual_block(
in_filters=192, nb_filters=384, repetitions=12
) # (block3)
self.block5 = _upsampling_residual_block(
in_filters=384, nb_filters=192, repetitions=7
) # (block4)
self.res1 = _shortcut(
in_filters=192, nb_filters=192
) # (block3, block5, subsample=(1,1))
self.block6 = _upsampling_residual_block(
in_filters=192, nb_filters=96, repetitions=5
) # (res1)
self.res2 = _shortcut(
in_filters=96, nb_filters=96
) # (block2, block6, subsample=(1,1))
self.block7 = _upsampling_residual_block(
in_filters=96, nb_filters=48, repetitions=3
) # (res2)
self.res3 = _shortcut(
in_filters=48, nb_filters=48
) # (block1, block7, subsample=(1,1))
self.block8 = _upsampling_residual_block(
in_filters=48, nb_filters=24, repetitions=2
) # (res3)
self.res4 = _shortcut(
in_filters=24, nb_filters=24
) # (block0,block8, subsample=(1,1))
self.block9 = _residual_block(
in_filters=24, nb_filters=16, repetitions=2, is_first_layer=True
) # (res4)
self.conv15 = _bn_relu_conv(
in_filters=16, nb_filters=1, fh=1, fw=1, subsample=1
) # (block7)
def forward(self, x):
x0 = self.block0(x)
x1 = self.block1(x0)
x2 = self.block2(x1)
x3 = self.block3(x2)
x4 = self.block4(x3)
x5 = self.block5(x4)
res1 = self.res1(x3, x5)
x6 = self.block6(res1)
res2 = self.res2(x2, x6)
x7 = self.block7(res2)
res3 = self.res3(x1, x7)
x8 = self.block8(res3)
res4 = self.res4(x0, x8)
x9 = self.block9(res4)
y = self.conv15(x9)
return y
class MangaLineExtraction:
def __init__(self, device=None, model_dir=None):
self.model = None
self.device = device
MangaLineExtraction.model_dir = model_dir
def load_model(self):
remote_model_path = (
"https://huggingface.co/lllyasviel/Annotators/resolve/main/erika.pth"
)
modelpath = os.path.join(self.model_dir, "erika.pth")
if not os.path.exists(modelpath):
load_file_from_url(remote_model_path, model_dir=self.model_dir)
# norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False)
net = res_skip()
ckpt = torch.load(modelpath)
for key in list(ckpt.keys()):
if "module." in key:
ckpt[key.replace("module.", "")] = ckpt[key]
del ckpt[key]
net.load_state_dict(ckpt)
net.eval()
self.model = net.to(self.device)
def unload_model(self):
if self.model is not None:
self.model.cpu()
def __call__(self, input_image):
if self.model is None:
self.load_model()
self.model.to(self.device)
# if width or height is not divisible by 16, pad the image
h, w = input_image.shape[:2]
# get adjusted pixel amount to max 1280x1280
total_pixels = h * w
if total_pixels > 1280 * 1280:
ratio = (1280 * 1280) / total_pixels
ratio = ratio**0.5
h = int(h * ratio)
w = int(w * ratio)
divisible = 16
h = h + (divisible - h % divisible) % divisible
w = w + (divisible - w % divisible) % divisible
input_image = cv2.resize(input_image, (w, h))
img = cv2.cvtColor(input_image, cv2.COLOR_RGB2GRAY)
img = np.ascontiguousarray(img.copy()).copy()
with torch.no_grad():
image_feed = torch.from_numpy(img).float().to(self.device)
image_feed = rearrange(image_feed, "h w -> 1 1 h w")
line = self.model(image_feed).cpu().numpy()[0, 0]
# line = 255 - line
return line.clip(0, 255).astype(np.uint8)
|