Kohaku-Blueleaf
init
26d4aa7
raw
history blame
1.39 kB
import torch
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
def unet_add_coded_conds(unet, added_number_count=1):
unet.add_time_proj = Timesteps(256, True, 0)
unet.add_embedding = TimestepEmbedding(256 * added_number_count, 1280)
def get_aug_embed(emb, encoder_hidden_states, added_cond_kwargs):
coded_conds = added_cond_kwargs.get("coded_conds")
batch_size = coded_conds.shape[0]
time_embeds = unet.add_time_proj(coded_conds.flatten())
time_embeds = time_embeds.reshape((batch_size, -1))
time_embeds = time_embeds.to(emb)
aug_emb = unet.add_embedding(time_embeds)
return aug_emb
unet.get_aug_embed = get_aug_embed
unet_original_forward = unet.forward
def hooked_unet_forward(sample, timestep, encoder_hidden_states, **kwargs):
cross_attention_kwargs = {k: v for k, v in kwargs['cross_attention_kwargs'].items()}
coded_conds = cross_attention_kwargs.pop('coded_conds')
kwargs['cross_attention_kwargs'] = cross_attention_kwargs
coded_conds = torch.cat([coded_conds] * (sample.shape[0] // coded_conds.shape[0]), dim=0).to(sample.device)
kwargs['added_cond_kwargs'] = dict(coded_conds=coded_conds)
return unet_original_forward(sample, timestep, encoder_hidden_states, **kwargs)
unet.forward = hooked_unet_forward
return