Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import cv2 | |
import numpy as np | |
from urllib.parse import urlparse | |
def load_file_from_url( | |
url: str, | |
*, | |
model_dir: str, | |
progress: bool = True, | |
file_name: str | None = None, | |
) -> str: | |
"""Download a file from `url` into `model_dir`, using the file present if possible. | |
Returns the path to the downloaded file. | |
""" | |
os.makedirs(model_dir, exist_ok=True) | |
if not file_name: | |
parts = urlparse(url) | |
file_name = os.path.basename(parts.path) | |
cached_file = os.path.abspath(os.path.join(model_dir, file_name)) | |
if not os.path.exists(cached_file): | |
print(f'Downloading: "{url}" to {cached_file}\n') | |
from torch.hub import download_url_to_file | |
download_url_to_file(url, cached_file, progress=progress) | |
return cached_file | |
def combine_linearts(lineart1: np.ndarray, lineart2: np.ndarray, erode=[False, False]) -> np.ndarray: | |
if erode[0]: | |
lineart1 = cv2.erode(lineart1, np.ones((3, 3), np.uint8)) | |
if erode[1]: | |
lineart2 = cv2.erode(lineart2, np.ones((3, 3), np.uint8)) | |
# unify the dark part of lineart1 and lineart2 | |
union = np.where(lineart1 < lineart2, lineart1, lineart2) | |
return union | |