import torch import numpy as np from tqdm import tqdm @torch.no_grad() def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, progress_tqdm=None): """DPM-Solver++(2M).""" extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) sigma_fn = lambda t: t.neg().exp() t_fn = lambda sigma: sigma.log().neg() old_denoised = None bar = tqdm if progress_tqdm is None else progress_tqdm for i in bar(range(len(sigmas) - 1)): denoised = model(x, sigmas[i] * s_in, **extra_args) if callback is not None: callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1]) h = t_next - t if old_denoised is None or sigmas[i + 1] == 0: x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised else: h_last = t - t_fn(sigmas[i - 1]) r = h_last / h denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d old_denoised = denoised return x class KModel: def __init__(self, unet, timesteps=1000, linear_start=0.00085, linear_end=0.012, linear=False): if linear: betas = torch.linspace(linear_start, linear_end, timesteps, dtype=torch.float64) else: betas = torch.linspace(linear_start ** 0.5, linear_end ** 0.5, timesteps, dtype=torch.float64) ** 2 alphas = 1. - betas alphas_cumprod = torch.tensor(np.cumprod(alphas, axis=0), dtype=torch.float32) self.sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5 self.log_sigmas = self.sigmas.log() self.sigma_data = 1.0 self.unet = unet return @property def sigma_min(self): return self.sigmas[0] @property def sigma_max(self): return self.sigmas[-1] def timestep(self, sigma): log_sigma = sigma.log() dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None] return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device) def get_sigmas_karras(self, n, rho=7.): ramp = torch.linspace(0, 1, n) min_inv_rho = self.sigma_min ** (1 / rho) max_inv_rho = self.sigma_max ** (1 / rho) sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return torch.cat([sigmas, sigmas.new_zeros([1])]) def __call__(self, x, sigma, **extra_args): x_ddim_space = x / (sigma[:, None, None, None] ** 2 + self.sigma_data ** 2) ** 0.5 x_ddim_space = x_ddim_space.to(dtype=self.unet.dtype) t = self.timestep(sigma) cfg_scale = extra_args['cfg_scale'] eps_positive = self.unet(x_ddim_space, t, return_dict=False, **extra_args['positive'])[0] eps_negative = self.unet(x_ddim_space, t, return_dict=False, **extra_args['negative'])[0] noise_pred = eps_negative + cfg_scale * (eps_positive - eps_negative) return x - noise_pred * sigma[:, None, None, None] class KDiffusionSampler: def __init__(self, unet, **kwargs): self.unet = unet self.k_model = KModel(unet=unet, **kwargs) @torch.inference_mode() def __call__( self, initial_latent = None, strength = 1.0, num_inference_steps = 25, guidance_scale = 5.0, batch_size = 1, generator = None, prompt_embeds = None, negative_prompt_embeds = None, cross_attention_kwargs = None, same_noise_in_batch = False, progress_tqdm = None, ): device = self.unet.device # Sigmas sigmas = self.k_model.get_sigmas_karras(int(num_inference_steps/strength)) sigmas = sigmas[-(num_inference_steps + 1):].to(device) # Initial latents if same_noise_in_batch: noise = torch.randn(initial_latent.shape, generator=generator, device=device, dtype=self.unet.dtype).repeat(batch_size, 1, 1, 1) initial_latent = initial_latent.repeat(batch_size, 1, 1, 1).to(device=device, dtype=self.unet.dtype) else: initial_latent = initial_latent.repeat(batch_size, 1, 1, 1).to(device=device, dtype=self.unet.dtype) noise = torch.randn(initial_latent.shape, generator=generator, device=device, dtype=self.unet.dtype) latents = initial_latent + noise * sigmas[0].to(initial_latent) # Batch latents = latents.to(device) prompt_embeds = prompt_embeds.repeat(batch_size, 1, 1).to(device) negative_prompt_embeds = negative_prompt_embeds.repeat(batch_size, 1, 1).to(device) # Feeds sampler_kwargs = dict( cfg_scale=guidance_scale, positive=dict( encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs ), negative=dict( encoder_hidden_states=negative_prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, ) ) # Sample results = sample_dpmpp_2m(self.k_model, latents, sigmas, extra_args=sampler_kwargs, progress_tqdm=progress_tqdm) return results