Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import torch | |
import gradio as gr | |
import yt_dlp as youtube_dl | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer | |
from threading import Thread | |
import tempfile | |
import os | |
MODEL_NAME = "openai/whisper-large-v3-turbo" | |
BATCH_SIZE = 8 | |
FILE_LIMIT_MB = 1000 | |
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files | |
device = 0 if torch.cuda.is_available() else "cpu" | |
# Initialize the transcription pipeline | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
# Hugging Face Token for the LLM model | |
HF_TOKEN = os.getenv("HF_TOKEN") # Make sure to set this in the environment variables | |
# Load tokenizer and model for SOAP note generation | |
tokenizer = AutoTokenizer.from_pretrained("NousResearch/Hermes-3-Llama-3.1-8B") | |
model = AutoModelForCausalLM.from_pretrained("NousResearch/Hermes-3-Llama-3.1-8B", device_map="auto") | |
# Prompt for SOAP note generation | |
sys_prompt = "You are a world class clinical assistant." | |
task_prompt = """ | |
Convert the following transcribed conversation into a clinical SOAP note. | |
The text includes dialogue between a physician and a patient. Please clearly distinguish between the physician's and the patient's statements. | |
Extract and organize the information into the relevant sections of a SOAP note: | |
- Subjective (symptoms and patient statements), | |
- Objective (clinical findings and observations, these might be missing if the physician has not conducted a physical exam or has not verbally stated findings), | |
- Assessment (diagnosis or potential diagnoses, objectively provide a top 5 most likely diagnosis based on just the subjective findings, and use the objective findings if available), | |
- Plan (treatment and follow-up). | |
Ensure the note is concise, clear, and accurately reflects the conversation. | |
""" | |
# Function to transcribe audio inputs | |
def transcribe(inputs, task): | |
if inputs is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
return text | |
# Function to download audio from YouTube | |
def download_yt_audio(yt_url, filename): | |
info_loader = youtube_dl.YoutubeDL() | |
try: | |
info = info_loader.extract_info(yt_url, download=False) | |
except youtube_dl.utils.DownloadError as err: | |
raise gr.Error(str(err)) | |
file_length_s = sum(x * int(t) for x, t in zip([3600, 60, 1], info["duration_string"].split(":")) if t.isdigit()) | |
if file_length_s > YT_LENGTH_LIMIT_S: | |
raise gr.Error(f"Video too long. Maximum allowed duration is {YT_LENGTH_LIMIT_S / 60} minutes.") | |
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} | |
with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
ydl.download([yt_url]) | |
# Function to transcribe YouTube audio | |
def yt_transcribe(yt_url, task): | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "video.mp4") | |
download_yt_audio(yt_url, filepath) | |
with open(filepath, "rb") as f: | |
inputs = f.read() | |
inputs = pipe.feature_extractor.ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate) | |
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate} | |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
return f'<iframe width="500" height="320" src="https://www.youtube.com/embed/{yt_url.split("?v=")[-1]}"> </iframe>', text | |
# Function to generate SOAP notes using LLM | |
def generate_soap(transcribed_text): | |
prompt = f"{sys_prompt}\n\n{task_prompt}\n{transcribed_text}" | |
inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device) | |
outputs = model.generate(inputs, max_new_tokens=512) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Gradio Interfaces for different inputs | |
demo = gr.Blocks(theme=gr.themes.Ocean()) | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[gr.Audio(sources="microphone", type="filepath"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")], | |
outputs="text", | |
title="Whisper Large V3 Turbo: Transcribe Audio", | |
description="Transcribe long-form microphone or audio inputs." | |
) | |
file_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[gr.Audio(sources="upload", type="filepath", label="Audio file"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")], | |
outputs="text", | |
title="Whisper Large V3: Transcribe Audio" | |
) | |
yt_transcribe = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")], | |
outputs=["html", "text"], | |
title="Whisper Large V3: Transcribe YouTube" | |
) | |
soap_note = gr.Interface( | |
fn=generate_soap, | |
inputs="text", | |
outputs="text", | |
title="Generate Clinical SOAP Note", | |
description="Convert transcribed conversation to a clinical SOAP note with structured sections (Subjective, Objective, Assessment, Plan)." | |
) | |
with demo: | |
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe, soap_note], ["Microphone", "Audio file", "YouTube", "SOAP Note"]) | |
demo.queue().launch(ssr_mode=False) | |