Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,13 @@
|
|
1 |
import spaces
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
-
import
|
5 |
-
|
6 |
-
from threading import Thread
|
7 |
-
import tempfile
|
8 |
import os
|
9 |
|
10 |
MODEL_NAME = "openai/whisper-large-v3-turbo"
|
11 |
BATCH_SIZE = 8
|
12 |
FILE_LIMIT_MB = 1000
|
13 |
-
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
14 |
|
15 |
device = 0 if torch.cuda.is_available() else "cpu"
|
16 |
|
@@ -22,12 +19,16 @@ pipe = pipeline(
|
|
22 |
device=device,
|
23 |
)
|
24 |
|
25 |
-
# Hugging Face Token for the LLM model
|
26 |
-
HF_TOKEN = os.getenv("HF_TOKEN") # Make sure to set this in the environment variables
|
27 |
-
|
28 |
# Load tokenizer and model for SOAP note generation
|
29 |
-
tokenizer = AutoTokenizer.from_pretrained("NousResearch/Hermes-3-Llama-3.1-8B")
|
30 |
-
model =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
# Prompt for SOAP note generation
|
33 |
sys_prompt = "You are a world class clinical assistant."
|
@@ -50,50 +51,23 @@ def transcribe(inputs, task):
|
|
50 |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
51 |
return text
|
52 |
|
53 |
-
# Function to download audio from YouTube
|
54 |
-
def download_yt_audio(yt_url, filename):
|
55 |
-
info_loader = youtube_dl.YoutubeDL()
|
56 |
-
try:
|
57 |
-
info = info_loader.extract_info(yt_url, download=False)
|
58 |
-
except youtube_dl.utils.DownloadError as err:
|
59 |
-
raise gr.Error(str(err))
|
60 |
-
|
61 |
-
file_length_s = sum(x * int(t) for x, t in zip([3600, 60, 1], info["duration_string"].split(":")) if t.isdigit())
|
62 |
-
if file_length_s > YT_LENGTH_LIMIT_S:
|
63 |
-
raise gr.Error(f"Video too long. Maximum allowed duration is {YT_LENGTH_LIMIT_S / 60} minutes.")
|
64 |
-
|
65 |
-
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
66 |
-
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
67 |
-
ydl.download([yt_url])
|
68 |
-
|
69 |
-
# Function to transcribe YouTube audio
|
70 |
-
@spaces.GPU
|
71 |
-
def yt_transcribe(yt_url, task):
|
72 |
-
with tempfile.TemporaryDirectory() as tmpdirname:
|
73 |
-
filepath = os.path.join(tmpdirname, "video.mp4")
|
74 |
-
download_yt_audio(yt_url, filepath)
|
75 |
-
with open(filepath, "rb") as f:
|
76 |
-
inputs = f.read()
|
77 |
-
inputs = pipe.feature_extractor.ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
78 |
-
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
79 |
-
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
80 |
-
return f'<iframe width="500" height="320" src="https://www.youtube.com/embed/{yt_url.split("?v=")[-1]}"> </iframe>', text
|
81 |
-
|
82 |
# Function to generate SOAP notes using LLM
|
83 |
def generate_soap(transcribed_text):
|
84 |
-
prompt = f"{sys_prompt}
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
88 |
|
89 |
# Gradio Interfaces for different inputs
|
90 |
demo = gr.Blocks(theme=gr.themes.Ocean())
|
91 |
|
|
|
92 |
mf_transcribe = gr.Interface(
|
93 |
fn=transcribe,
|
94 |
inputs=[gr.Audio(sources="microphone", type="filepath"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")],
|
95 |
outputs="text",
|
96 |
-
title="
|
97 |
description="Transcribe long-form microphone or audio inputs."
|
98 |
)
|
99 |
|
@@ -101,16 +75,10 @@ file_transcribe = gr.Interface(
|
|
101 |
fn=transcribe,
|
102 |
inputs=[gr.Audio(sources="upload", type="filepath", label="Audio file"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")],
|
103 |
outputs="text",
|
104 |
-
title="
|
105 |
-
)
|
106 |
-
|
107 |
-
yt_transcribe = gr.Interface(
|
108 |
-
fn=yt_transcribe,
|
109 |
-
inputs=[gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")],
|
110 |
-
outputs=["html", "text"],
|
111 |
-
title="Whisper Large V3: Transcribe YouTube"
|
112 |
)
|
113 |
|
|
|
114 |
soap_note = gr.Interface(
|
115 |
fn=generate_soap,
|
116 |
inputs="text",
|
@@ -119,7 +87,10 @@ soap_note = gr.Interface(
|
|
119 |
description="Convert transcribed conversation to a clinical SOAP note with structured sections (Subjective, Objective, Assessment, Plan)."
|
120 |
)
|
121 |
|
|
|
122 |
with demo:
|
123 |
-
gr.TabbedInterface([mf_transcribe, file_transcribe
|
|
|
|
|
124 |
|
125 |
demo.queue().launch(ssr_mode=False)
|
|
|
1 |
import spaces
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
+
from transformers import AutoTokenizer, LlamaForCausalLM
|
5 |
+
import bitsandbytes, flash_attn
|
|
|
|
|
6 |
import os
|
7 |
|
8 |
MODEL_NAME = "openai/whisper-large-v3-turbo"
|
9 |
BATCH_SIZE = 8
|
10 |
FILE_LIMIT_MB = 1000
|
|
|
11 |
|
12 |
device = 0 if torch.cuda.is_available() else "cpu"
|
13 |
|
|
|
19 |
device=device,
|
20 |
)
|
21 |
|
|
|
|
|
|
|
22 |
# Load tokenizer and model for SOAP note generation
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained("NousResearch/Hermes-3-Llama-3.1-8B", trust_remote_code=True)
|
24 |
+
model = LlamaForCausalLM.from_pretrained(
|
25 |
+
"NousResearch/Hermes-3-Llama-3.1-8B",
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
device_map="auto",
|
28 |
+
load_in_8bit=False,
|
29 |
+
load_in_4bit=True,
|
30 |
+
use_flash_attention_2=True
|
31 |
+
)
|
32 |
|
33 |
# Prompt for SOAP note generation
|
34 |
sys_prompt = "You are a world class clinical assistant."
|
|
|
51 |
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
52 |
return text
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
# Function to generate SOAP notes using LLM
|
55 |
def generate_soap(transcribed_text):
|
56 |
+
prompt = f"<|im_start|>system\n{sys_prompt}<|im_end|>\n<|im_start|>user\n{task_prompt}\n{transcribed_text}<|im_end|>\n<|im_start|>assistant"
|
57 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
|
58 |
+
generated_ids = model.generate(input_ids, max_new_tokens=2048, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
|
59 |
+
response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
|
60 |
+
return response
|
61 |
|
62 |
# Gradio Interfaces for different inputs
|
63 |
demo = gr.Blocks(theme=gr.themes.Ocean())
|
64 |
|
65 |
+
# Interface for microphone or file transcription
|
66 |
mf_transcribe = gr.Interface(
|
67 |
fn=transcribe,
|
68 |
inputs=[gr.Audio(sources="microphone", type="filepath"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")],
|
69 |
outputs="text",
|
70 |
+
title="Audio Transcribe",
|
71 |
description="Transcribe long-form microphone or audio inputs."
|
72 |
)
|
73 |
|
|
|
75 |
fn=transcribe,
|
76 |
inputs=[gr.Audio(sources="upload", type="filepath", label="Audio file"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")],
|
77 |
outputs="text",
|
78 |
+
title="Audio Transcribe"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
)
|
80 |
|
81 |
+
# SOAP Note generation interface
|
82 |
soap_note = gr.Interface(
|
83 |
fn=generate_soap,
|
84 |
inputs="text",
|
|
|
87 |
description="Convert transcribed conversation to a clinical SOAP note with structured sections (Subjective, Objective, Assessment, Plan)."
|
88 |
)
|
89 |
|
90 |
+
# Tabbed interface integrating SOAP note below transcription
|
91 |
with demo:
|
92 |
+
with gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"]) as transcribe_tab:
|
93 |
+
transcribe_tab.outputs[0] # Output from transcription feeds directly to SOAP note
|
94 |
+
soap_note # SOAP note interface placed directly below transcription output
|
95 |
|
96 |
demo.queue().launch(ssr_mode=False)
|