import spaces import torch import gradio as gr from transformers import AutoTokenizer, LlamaForCausalLM import bitsandbytes, flash_attn import os MODEL_NAME = "openai/whisper-large-v3-turbo" BATCH_SIZE = 8 FILE_LIMIT_MB = 1000 device = 0 if torch.cuda.is_available() else "cpu" # Initialize the transcription pipeline pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) # Load tokenizer and model for SOAP note generation tokenizer = AutoTokenizer.from_pretrained("NousResearch/Hermes-3-Llama-3.1-8B", trust_remote_code=True) model = LlamaForCausalLM.from_pretrained( "NousResearch/Hermes-3-Llama-3.1-8B", torch_dtype=torch.float16, device_map="auto", load_in_8bit=False, load_in_4bit=True, use_flash_attention_2=True ) # Prompt for SOAP note generation sys_prompt = "You are a world class clinical assistant." task_prompt = """ Convert the following transcribed conversation into a clinical SOAP note. The text includes dialogue between a physician and a patient. Please clearly distinguish between the physician's and the patient's statements. Extract and organize the information into the relevant sections of a SOAP note: - Subjective (symptoms and patient statements), - Objective (clinical findings and observations, these might be missing if the physician has not conducted a physical exam or has not verbally stated findings), - Assessment (diagnosis or potential diagnoses, objectively provide a top 5 most likely diagnosis based on just the subjective findings, and use the objective findings if available), - Plan (treatment and follow-up). Ensure the note is concise, clear, and accurately reflects the conversation. """ # Function to transcribe audio inputs @spaces.GPU def transcribe(inputs, task): if inputs is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] return text # Function to generate SOAP notes using LLM def generate_soap(transcribed_text): prompt = f"<|im_start|>system\n{sys_prompt}<|im_end|>\n<|im_start|>user\n{task_prompt}\n{transcribed_text}<|im_end|>\n<|im_start|>assistant" input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") generated_ids = model.generate(input_ids, max_new_tokens=2048, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id) response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True) return response # Gradio Interfaces for different inputs demo = gr.Blocks(theme=gr.themes.Ocean()) # Interface for microphone or file transcription mf_transcribe = gr.Interface( fn=transcribe, inputs=[gr.Audio(sources="microphone", type="filepath"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")], outputs="text", title="Audio Transcribe", description="Transcribe long-form microphone or audio inputs." ) file_transcribe = gr.Interface( fn=transcribe, inputs=[gr.Audio(sources="upload", type="filepath", label="Audio file"), gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")], outputs="text", title="Audio Transcribe" ) # SOAP Note generation interface soap_note = gr.Interface( fn=generate_soap, inputs="text", outputs="text", title="Generate Clinical SOAP Note", description="Convert transcribed conversation to a clinical SOAP note with structured sections (Subjective, Objective, Assessment, Plan)." ) # Tabbed interface integrating SOAP note below transcription with demo: with gr.TabbedInterface([mf_transcribe, file_transcribe], ["Microphone", "Audio file"]) as transcribe_tab: transcribe_tab.outputs[0] # Output from transcription feeds directly to SOAP note soap_note # SOAP note interface placed directly below transcription output demo.queue().launch(ssr_mode=False)