Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,38 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
3 |
import torch
|
4 |
-
import librosa
|
5 |
import numpy as np
|
6 |
from scipy.io.wavfile import write
|
|
|
7 |
|
8 |
# تحميل النماذج والمُعالج
|
9 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
10 |
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
11 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
12 |
|
13 |
-
# تعيين القيم الافتراضية لمتغيرات الصوت
|
14 |
LANGUAGES = {"English": "en", "French": "fr", "Spanish": "es"}
|
15 |
|
16 |
def generate_speaker_embedding(speaker_type):
|
17 |
-
"""
|
|
|
|
|
18 |
base_embedding = torch.randn(1, 512)
|
19 |
if speaker_type == "Female":
|
20 |
return base_embedding * 0.8
|
21 |
-
|
22 |
-
return base_embedding * 1.2
|
23 |
|
24 |
-
def adjust_speed(audio, speed):
|
25 |
-
"""
|
26 |
-
|
27 |
-
|
28 |
return librosa.effects.time_stretch(audio, speed)
|
29 |
|
30 |
def text_to_speech(text, language, speaker_type, speed):
|
|
|
|
|
|
|
31 |
try:
|
32 |
-
#
|
33 |
speaker_embeddings = generate_speaker_embedding(speaker_type)
|
34 |
|
35 |
# معالجة النص
|
@@ -37,25 +40,26 @@ def text_to_speech(text, language, speaker_type, speed):
|
|
37 |
|
38 |
# توليد الصوت
|
39 |
generated_speech = model.generate_speech(
|
40 |
-
inputs["input_ids"],
|
41 |
-
speaker_embeddings,
|
42 |
vocoder=vocoder
|
43 |
).cpu().numpy()
|
44 |
|
45 |
-
#
|
46 |
adjusted_speech = adjust_speed(generated_speech, speed)
|
47 |
|
48 |
-
#
|
49 |
output_file = "output.wav"
|
50 |
-
write(output_file, 24000, adjusted_speech.astype(np.
|
51 |
|
52 |
return output_file
|
53 |
except Exception as e:
|
54 |
-
|
|
|
55 |
|
56 |
# إنشاء واجهة Gradio
|
57 |
def create_interface():
|
58 |
-
with gr.Blocks(
|
59 |
gr.Markdown("# 🎙️ Multilingual Text-to-Speech")
|
60 |
|
61 |
with gr.Row():
|
@@ -64,7 +68,7 @@ def create_interface():
|
|
64 |
language = gr.Dropdown(choices=list(LANGUAGES.keys()), value="English", label="Language")
|
65 |
speaker = gr.Radio(choices=["Male", "Female"], value="Male", label="Speaker Gender")
|
66 |
speed = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label="Speech Speed")
|
67 |
-
submit_btn = gr.Button("Generate Speech"
|
68 |
|
69 |
with gr.Column():
|
70 |
audio_output = gr.Audio(label="Generated Speech", type="filepath")
|
@@ -77,12 +81,13 @@ def create_interface():
|
|
77 |
|
78 |
gr.Markdown("""
|
79 |
### Features:
|
80 |
-
- Multilingual support
|
81 |
-
- Male and Female voice options
|
82 |
-
- Adjustable speech speed
|
83 |
-
- High-quality, natural-sounding voices
|
84 |
""")
|
85 |
return demo
|
86 |
|
|
|
87 |
demo = create_interface()
|
88 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
3 |
import torch
|
|
|
4 |
import numpy as np
|
5 |
from scipy.io.wavfile import write
|
6 |
+
import librosa
|
7 |
|
8 |
# تحميل النماذج والمُعالج
|
9 |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
10 |
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
11 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
12 |
|
|
|
13 |
LANGUAGES = {"English": "en", "French": "fr", "Spanish": "es"}
|
14 |
|
15 |
def generate_speaker_embedding(speaker_type):
|
16 |
+
"""
|
17 |
+
توليد تعبيرات الصوت بناءً على نوع الصوت (ذكر أو أنثى).
|
18 |
+
"""
|
19 |
base_embedding = torch.randn(1, 512)
|
20 |
if speaker_type == "Female":
|
21 |
return base_embedding * 0.8
|
22 |
+
return base_embedding * 1.2
|
|
|
23 |
|
24 |
+
def adjust_speed(audio, speed, sampling_rate=24000):
|
25 |
+
"""
|
26 |
+
تعديل سرعة الصوت باستخدام مكتبة librosa.
|
27 |
+
"""
|
28 |
return librosa.effects.time_stretch(audio, speed)
|
29 |
|
30 |
def text_to_speech(text, language, speaker_type, speed):
|
31 |
+
"""
|
32 |
+
تحويل النص إلى صوت.
|
33 |
+
"""
|
34 |
try:
|
35 |
+
# توليد تعبيرات الصوت بناءً على نوع المتحدث
|
36 |
speaker_embeddings = generate_speaker_embedding(speaker_type)
|
37 |
|
38 |
# معالجة النص
|
|
|
40 |
|
41 |
# توليد الصوت
|
42 |
generated_speech = model.generate_speech(
|
43 |
+
inputs["input_ids"],
|
44 |
+
speaker_embeddings,
|
45 |
vocoder=vocoder
|
46 |
).cpu().numpy()
|
47 |
|
48 |
+
# تعديل سرعة الصوت
|
49 |
adjusted_speech = adjust_speed(generated_speech, speed)
|
50 |
|
51 |
+
# حفظ الصوت كملف WAV
|
52 |
output_file = "output.wav"
|
53 |
+
write(output_file, 24000, (adjusted_speech * 32767).astype(np.int16))
|
54 |
|
55 |
return output_file
|
56 |
except Exception as e:
|
57 |
+
print(f"Error: {e}")
|
58 |
+
return None
|
59 |
|
60 |
# إنشاء واجهة Gradio
|
61 |
def create_interface():
|
62 |
+
with gr.Blocks() as demo:
|
63 |
gr.Markdown("# 🎙️ Multilingual Text-to-Speech")
|
64 |
|
65 |
with gr.Row():
|
|
|
68 |
language = gr.Dropdown(choices=list(LANGUAGES.keys()), value="English", label="Language")
|
69 |
speaker = gr.Radio(choices=["Male", "Female"], value="Male", label="Speaker Gender")
|
70 |
speed = gr.Slider(minimum=0.5, maximum=2.0, value=1.0, step=0.1, label="Speech Speed")
|
71 |
+
submit_btn = gr.Button("Generate Speech")
|
72 |
|
73 |
with gr.Column():
|
74 |
audio_output = gr.Audio(label="Generated Speech", type="filepath")
|
|
|
81 |
|
82 |
gr.Markdown("""
|
83 |
### Features:
|
84 |
+
- Multilingual support (English, French, Spanish)
|
85 |
+
- Male and Female voice options
|
86 |
+
- Adjustable speech speed
|
87 |
+
- High-quality, natural-sounding voices
|
88 |
""")
|
89 |
return demo
|
90 |
|
91 |
+
# تشغيل التطبيق
|
92 |
demo = create_interface()
|
93 |
demo.launch()
|